A note on embeddings of projective spaces
Abstract
Let
and
be commutative fields, and
integers with
. Suppose that there exists an embedding
of
to
, then we have
and
. Conversely, there exists an embedding
of
to
if
and if (1)
, or (2)
and
is a cyclic extension of
with some additional conditions on l and r.
![\textbf{k}](http://212.189.136.205/plugins/generic/latexRender/cache/8c792ec434a2bb4539cd9e98a19a931b.png)
![\textbf{K}](http://212.189.136.205/plugins/generic/latexRender/cache/e5aadcb476b5d13944833203f9b8752b.png)
![l,m](http://212.189.136.205/plugins/generic/latexRender/cache/767e055909f28f5d5f3dbec8cb996555.png)
![l ≥ 1, m ≥ 2](http://212.189.136.205/plugins/generic/latexRender/cache/117f27c5af30542073f0ec9ac2307d76.png)
![\psi](http://212.189.136.205/plugins/generic/latexRender/cache/a11bd56a0ff5973a5604bb3fc9142b1d.png)
![PG(m + l,\textbf{k})](http://212.189.136.205/plugins/generic/latexRender/cache/4c0a5207a0e375746416e17311d1f241.png)
![PG(m,\textbf{K})](http://212.189.136.205/plugins/generic/latexRender/cache/fedd0b87c7a72bb0a518b265cc1b3854.png)
![r = dim_{\textbf{k}}\textbf{K} ≥ 4](http://212.189.136.205/plugins/generic/latexRender/cache/cb5ee87052153b1241859ac8c24d839c.png)
![m ≥ ≤ft [{3l}\over{r-3}\right] - 1](http://212.189.136.205/plugins/generic/latexRender/cache/d30734a9663178578a33592f8d9a1617.png)
![\psi](http://212.189.136.205/plugins/generic/latexRender/cache/a11bd56a0ff5973a5604bb3fc9142b1d.png)
![PG(l + m,\textbf{k})](http://212.189.136.205/plugins/generic/latexRender/cache/a1bb533a6e5bd49cc49c1eab07b44bab.png)
![PG(m,\textbf{K})](http://212.189.136.205/plugins/generic/latexRender/cache/fedd0b87c7a72bb0a518b265cc1b3854.png)
![m ≥ ≤ft [{3l}\over{r-3}\right] - 1](http://212.189.136.205/plugins/generic/latexRender/cache/d30734a9663178578a33592f8d9a1617.png)
![dim_{\textbf{k}}\textbf{K} = 4](http://212.189.136.205/plugins/generic/latexRender/cache/87300de961e0fdb00b86df618345b2a8.png)
![dim_{\textbf{k}}\textbf{K} > 4](http://212.189.136.205/plugins/generic/latexRender/cache/c74855e9fb35e7a65d3533b49ceaec7d.png)
![\textbf{K}](http://212.189.136.205/plugins/generic/latexRender/cache/e5aadcb476b5d13944833203f9b8752b.png)
![\textbf{k}](http://212.189.136.205/plugins/generic/latexRender/cache/8c792ec434a2bb4539cd9e98a19a931b.png)
DOI Code:
10.1285/i15900932v19n2p285
Full Text: PDF