A supplement to the Alexandrov–Lester Theorem
Abstract
Let
be the 4-dimensional Minkowski-space of special relativity over the reals with quadratic form Q. Consider a mapping
such that
for all
. Under the assumption that
is a bijection Alexandrov's theorem states that
is a linear bijection followed by a translation. Our results imply (as a special case) that the assumption of
being a bijection an be dropped.
![V](http://212.189.136.205/plugins/generic/latexRender/cache/5206560a306a2e085a437fd258eb57ce.png)
![\psi:V→ V](http://212.189.136.205/plugins/generic/latexRender/cache/15ec9e94931ee407c337f8864eef1e11.png)
![Q(x-y)=0\Leftrightarrow Q(x\psi-y\psi)=0](http://212.189.136.205/plugins/generic/latexRender/cache/3bf588b2f48c517b0849ca0e9f7a7a19.png)
![x,y \in V](http://212.189.136.205/plugins/generic/latexRender/cache/5a2d6d725e90b371ed1d9e02af715643.png)
![\psi](http://212.189.136.205/plugins/generic/latexRender/cache/a11bd56a0ff5973a5604bb3fc9142b1d.png)
![\psi](http://212.189.136.205/plugins/generic/latexRender/cache/a11bd56a0ff5973a5604bb3fc9142b1d.png)
![\psi](http://212.189.136.205/plugins/generic/latexRender/cache/a11bd56a0ff5973a5604bb3fc9142b1d.png)
DOI Code:
10.1285/i15900932v21n2p35
Keywords:
Distance-preserving mappings; Collineations; Orthogonal groups; Special relativity
Classification:
51N30; 51F25; 83A05; 51M05; 51P05
Full Text: PDF