Bilateral Riemann-Liouville Fractional Sobolev spaces
Abstract
We establish some notation and properties of the bilateral Riemann-Liouville fractional derivative
We introduce the associated Sobolev spaces of fractional order
, denoted by
, and the Bounded Variation spaces of fractional order
, denoted by
: these spaces are studied with the aim of providing a suitable functional framework for fractional variational models in image analysis.
![D^s.](http://212.189.136.205/plugins/generic/latexRender/cache/18728279cbc772736ed1a3133dbc4174.png)
![s](http://212.189.136.205/plugins/generic/latexRender/cache/03c7c0ace395d80182db07ae2c30f034.png)
![W^{s,1}(a,b)](http://212.189.136.205/plugins/generic/latexRender/cache/e46c222247eef6200df396cda4d54cec.png)
![s](http://212.189.136.205/plugins/generic/latexRender/cache/03c7c0ace395d80182db07ae2c30f034.png)
![BV^{s}(a,b)](http://212.189.136.205/plugins/generic/latexRender/cache/f76348477ece78856fb3d156040bfbc3.png)
DOI Code:
10.1285/i15900932v41n2p61
Keywords:
Fractional Calculus; Fractional Sobolev and BV Spaces
Full Text: PDF