Frame measures for infinitely many measures
Abstract
For every frame spectral measure
, there exists a discrete measure
as a frame measure. If
is not a frame spectral measure, then there is not any general statement about the existence of frame measures
for
. This motivated us to examine Bessel and frame measures. We construct infinitely many measures
which admit frame measures
, and we show that there exist infinitely many frame spectral measures
such that besides having a discrete frame measure, they admit continuous frame measures too.
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/b5e8c0f01bda5443c359e91eff770e43.png)
![\nu](http://212.189.136.205/plugins/generic/latexRender/cache/7abfbc470e9a9556b8362c90d46fc145.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/b5e8c0f01bda5443c359e91eff770e43.png)
![\nu](http://212.189.136.205/plugins/generic/latexRender/cache/7abfbc470e9a9556b8362c90d46fc145.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/b5e8c0f01bda5443c359e91eff770e43.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/b5e8c0f01bda5443c359e91eff770e43.png)
![\nu](http://212.189.136.205/plugins/generic/latexRender/cache/7abfbc470e9a9556b8362c90d46fc145.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/b5e8c0f01bda5443c359e91eff770e43.png)
DOI Code:
10.1285/i15900932v40n1p115
Keywords:
Fourier frame; Plancherel theorem; spectral measure; frame measure; Bessel measure
Full Text: PDF