On Defining the
-Generalized Gamma Function
Abstract
In this paper, we introduce a
-generalization of the gamma function and investigate some basic identities and properties. Further, we define a
-integral representation for this function. As an application, we give some double inequalities concerning the
-generalized gamma function by using of its
-integral representation.
![(p,q,k)](http://212.189.136.205/plugins/generic/latexRender/cache/1fa1e4515df13004ad0cec9bf002a77c.png)
![q](http://212.189.136.205/plugins/generic/latexRender/cache/7694f4a66316e53c8cdd9d9954bd611d.png)
![(p,q,k)](http://212.189.136.205/plugins/generic/latexRender/cache/1fa1e4515df13004ad0cec9bf002a77c.png)
![q](http://212.189.136.205/plugins/generic/latexRender/cache/7694f4a66316e53c8cdd9d9954bd611d.png)
DOI Code:
10.1285/i15900932v39n1p107
Keywords:
Gamma function; $q$-integral; $(p,q,k)$-generalized gamma function; $(p,q,k)$-generalized Pocchammer symbol; inequality
Full Text: PDF