Postulation of general unions of lines and decorated lines
Abstract
A +line A
,
, is the scheme A = L
with L a line and
a tangent vector of
supported by a point of L, but not tangent to L. Here we prove that a general disjoint union of lines and +lines has the expected Hilbert function.
![\subset](http://212.189.136.205/plugins/generic/latexRender/cache/f0bcb8751c76e7de8bf999d7ee7c1348.png)
![\mathbb {P}^r](http://212.189.136.205/plugins/generic/latexRender/cache/1209bf47c416827c26ed015c8b25850a.png)
![r \geq 3](http://212.189.136.205/plugins/generic/latexRender/cache/b66c7c86598cc1f3664e2c1e32a2542b.png)
![\cup](http://212.189.136.205/plugins/generic/latexRender/cache/1a4d3aa5781ebd50a8104d20b287ac85.png)
![v](http://212.189.136.205/plugins/generic/latexRender/cache/9e3669d19b675bd57058fd4664205d2a.png)
![v](http://212.189.136.205/plugins/generic/latexRender/cache/9e3669d19b675bd57058fd4664205d2a.png)
![\mathbb {P}^r](http://212.189.136.205/plugins/generic/latexRender/cache/1209bf47c416827c26ed015c8b25850a.png)
DOI Code:
10.1285/i15900932v35n1p1
Keywords:
postulation; Hilbert function; lines; zero-dimensional schemes
Full Text: PDF