Ideal properties and integral extension of convolution operators on ![L^\infty (G)](http://212.189.136.205/plugins/generic/latexRender/cache/95ebf9ce6ceb25cc1d1b7cdbf747bc37.png)
Abstract
We investigate operator ideal properties of convolution operators
(via measures
) acting in
, with
a compact abelian group. Of interest is when
is compact, as this corresponds to
having an integrable density relative to Haar measure
, i.e.,
. Precisely then is there an \textit{optimal} Banach function space
available which contains
properly, densely and continuously and such that
has a continuous,
-valued, linear extension
to
. A detailed study is made of
and
. Amongst other things, it is shown that
is compact iff the finitely additive,
-valued set function
is norm
-additive iff
, whereas the corresponding optimal extension
is compact iff
iff
has finite variation. We also characterize when
admits a Bochner (resp.\ Pettis)
-integrable,
-valued density.
![C_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/50cb268dc2b3bf18aac9c10f00930931.png)
![\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/c6a6eb61fd9c6c913da73b3642ca147d.png)
![{L^\infty (G)}](http://212.189.136.205/plugins/generic/latexRender/cache/e8f190bcbf4f28442f8de8005047069d.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![C_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/2d1f63844f740711dd4b3ea22a74a31b.png)
![\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/c6a6eb61fd9c6c913da73b3642ca147d.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/c9faf6ead2cd2c2187bd943488de1d0a.png)
![\lambda \ll \mu](http://212.189.136.205/plugins/generic/latexRender/cache/699a4087cff01adfe69c56c0019128c6.png)
![L^1 (m_\lambda)](http://212.189.136.205/plugins/generic/latexRender/cache/f22c21600d139a6e79affd46bd165a56.png)
![{L^\infty (G)}](http://212.189.136.205/plugins/generic/latexRender/cache/e8f190bcbf4f28442f8de8005047069d.png)
![C_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/2d1f63844f740711dd4b3ea22a74a31b.png)
![{L^\infty (G)}](http://212.189.136.205/plugins/generic/latexRender/cache/e8f190bcbf4f28442f8de8005047069d.png)
![I_{m_\lambda}](http://212.189.136.205/plugins/generic/latexRender/cache/5058fe2a6a9332c291e67239a0a7d29d.png)
![L^1 (m_\lambda)](http://212.189.136.205/plugins/generic/latexRender/cache/f22c21600d139a6e79affd46bd165a56.png)
![L^1 (m_\lambda)](http://212.189.136.205/plugins/generic/latexRender/cache/f22c21600d139a6e79affd46bd165a56.png)
![I_{m_\lambda}](http://212.189.136.205/plugins/generic/latexRender/cache/5058fe2a6a9332c291e67239a0a7d29d.png)
![C_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/2d1f63844f740711dd4b3ea22a74a31b.png)
![{L^\infty (G)}](http://212.189.136.205/plugins/generic/latexRender/cache/e8f190bcbf4f28442f8de8005047069d.png)
![m_\lambda (A) := C_\lambda ({\chi_{_{_{\scriptstyle{A}}}}})](http://212.189.136.205/plugins/generic/latexRender/cache/3ef188e3615e92e2004620820d8d80a3.png)
![\sigma](http://212.189.136.205/plugins/generic/latexRender/cache/a2ab7d71a0f07f388ff823293c147d21.png)
![\lambda \in L^1 (G)](http://212.189.136.205/plugins/generic/latexRender/cache/6f27b14cc07e8f00e1972278ff60e0bc.png)
![I_{m_\lambda}](http://212.189.136.205/plugins/generic/latexRender/cache/5058fe2a6a9332c291e67239a0a7d29d.png)
![\lambda \in C (G)](http://212.189.136.205/plugins/generic/latexRender/cache/573e72b952f39bda404ddbf0918a14c0.png)
![m_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/7361dff960ebef75325668e959da7f0f.png)
![m_\lambda](http://212.189.136.205/plugins/generic/latexRender/cache/7361dff960ebef75325668e959da7f0f.png)
![\mu](http://212.189.136.205/plugins/generic/latexRender/cache/c9faf6ead2cd2c2187bd943488de1d0a.png)
![L^{\infty} (G)](http://212.189.136.205/plugins/generic/latexRender/cache/6a2dab3bb99a71dbbb149512eefa3bdf.png)
DOI Code:
10.1285/i15900932v31n1p149
Keywords:
Convolution operator ; vector measure ; optimal domain ; Bochner-Pettis density
Full Text: PDF