A characterization of groups of exponent
which are nilpotent of class at most 2
Abstract
Let
be a group of prime exponent
. In this paper we prove that
is nilpotent of class at most 2 if and only if one of the following properties is true:
is also the support of a commutative group
such that
and
have the same cyclic cosets [cosets of order
].
the operation
defined on
by putting
, gives
a structure of commutative group.\end
![(\mathbf{G},+)](http://212.189.136.205/plugins/generic/latexRender/cache/2ef2b91f0e90fb7326eb2fdde817c1c6.png)
![p = 2n + 1](http://212.189.136.205/plugins/generic/latexRender/cache/eb0b349f9d48b974b4760106b11a48fd.png)
![(\mathbf{G},+)](http://212.189.136.205/plugins/generic/latexRender/cache/2ef2b91f0e90fb7326eb2fdde817c1c6.png)
![i)](http://212.189.136.205/plugins/generic/latexRender/cache/71e30cee73fa1933d3cd6959ef542ab9.png)
![\mathbf{G}](http://212.189.136.205/plugins/generic/latexRender/cache/527acb137a08b95c9f663e8d60297de7.png)
![(\mathbf{G},+')](http://212.189.136.205/plugins/generic/latexRender/cache/eb1ee14546f02c5b69076713a94abef1.png)
![(\mathbf{G},+)](http://212.189.136.205/plugins/generic/latexRender/cache/2ef2b91f0e90fb7326eb2fdde817c1c6.png)
![(\mathbf{G},+')](http://212.189.136.205/plugins/generic/latexRender/cache/eb1ee14546f02c5b69076713a94abef1.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![ii)](http://212.189.136.205/plugins/generic/latexRender/cache/a5efa8186bd4a083c7b71c83fc4135e2.png)
![\oplus](http://212.189.136.205/plugins/generic/latexRender/cache/61a41642d26f221806dcbccfcebc2ef8.png)
![\mathbf{G}](http://212.189.136.205/plugins/generic/latexRender/cache/527acb137a08b95c9f663e8d60297de7.png)
![x \oplus y = x/2 + y + x/2](http://212.189.136.205/plugins/generic/latexRender/cache/45cfbc402ff7fd81312405f02d5546c0.png)
![\mathbf{G}](http://212.189.136.205/plugins/generic/latexRender/cache/527acb137a08b95c9f663e8d60297de7.png)
DOI Code:
10.1285/i15900932v30n2p149
Keywords:
nilpotent groups; group partition
Full Text: PDF