On homotopy Lie algebra structures in the rings of differential operators
Abstract
We study the Schlessinger-Stasheff's homotopy Lie structures on the associative algebras of differential operators Diff
w.r.t. n independent variables.The Wronskians are proved to provide the relations for the generators of these algebras; two remarkable identities for the Wronskian and the Vandermonde determinants are obtained. We axiomize the idea of the Hochschild cohomologies and extend the group
of signs
to the circumpherence
. Then, the concept of associative homotopy Lie algebras admits nontrivial generalizations.
![_\ast(K^n)](http://212.189.136.205/plugins/generic/latexRender/cache/2f719f05987f7514ac5589a272c42708.png)
![\mathbb{Z}_2](http://212.189.136.205/plugins/generic/latexRender/cache/aeab2a60e0268f50c685c9ed5b738caf.png)
![(-1)^\sigma](http://212.189.136.205/plugins/generic/latexRender/cache/10776d83e328c809a9a6364ba4742cf5.png)
![S^1](http://212.189.136.205/plugins/generic/latexRender/cache/679c4c927f816045befe573024ddd21b.png)
DOI Code:
10.1285/i15900932v23n1p83
Keywords:
SH algebras; Differential operators; Wronskian determinants; CFT
Classification:
81T40; 15A15; 17B66; 15A54; 15A90; 17B68; 53C21
Full Text: PDF