On The Maximum Jump Number ![M(2k-1,k)](http://212.189.136.205/plugins/generic/latexRender/cache/fa2636e7af457819a2dc9dda3444cfe9.png)
Abstract
If
and
(
) are large enough , it is quite difficult to give the value of
. R.A. Brualdi and H.C. Jung gave a table about the value of
for
. In this paper, we show that
holds for
. Hence,
holds for
, which verifies that their conjecture
holds for
, and disprove their conjecture
for
,
.
![n](http://212.189.136.205/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![k](http://212.189.136.205/plugins/generic/latexRender/cache/8ce4b16b22b58894aa86c421e8759df3.png)
![n\geq k](http://212.189.136.205/plugins/generic/latexRender/cache/3c6d5915533ef4571813e474de415fdf.png)
![M(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/68d08e687651388240314ff46e9c49bb.png)
![M(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/68d08e687651388240314ff46e9c49bb.png)
![1\leq k \leq n\leq 10](http://212.189.136.205/plugins/generic/latexRender/cache/b02cae00db2a890f0cec81c4ad143ef7.png)
![4(k-1)-\lceil\sqrt{k-1}\rceil\leq M(2k-1,k)\leq 4k-7](http://212.189.136.205/plugins/generic/latexRender/cache/d31884b571b708f7bafaf18d9a90de80.png)
![k\geq 6](http://212.189.136.205/plugins/generic/latexRender/cache/24e52bf2747dbeb843ef84d6c5315356.png)
![M(2k-1,k)=4k-7](http://212.189.136.205/plugins/generic/latexRender/cache/71a0d93f7a6504a4c23cba48e6c6bcf9.png)
![6\leq k \leq 10](http://212.189.136.205/plugins/generic/latexRender/cache/d7481fb40df5eb6a5c7429a5bcf22193.png)
![M(2k+1,k+1)=4k-\lceil\sqrt{k}\rceil](http://212.189.136.205/plugins/generic/latexRender/cache/c14eec17daee808a1f81f37095cc5986.png)
![5\leq k\leq 9](http://212.189.136.205/plugins/generic/latexRender/cache/0501a787c6ee5c86e174e84b75b92533.png)
![M(n,k)<M(n+l_{1},k+l_{2})](http://212.189.136.205/plugins/generic/latexRender/cache/6a402f773add0296f357c99fbf25a4bc.png)
![l_{1}= 1](http://212.189.136.205/plugins/generic/latexRender/cache/f3cba20654b63bc684b1ac1f01de22a3.png)
![l_{2}= 1](http://212.189.136.205/plugins/generic/latexRender/cache/1efcd95d2b129992b84697e3d5a1a8ab.png)
DOI Code:
10.1285/i15900932v23n1p71
Keywords:
(0,1)-matrices; Jump number; Stair number; Conjecture
Classification:
05B20; 15A36
Full Text: PDF