Symmetric spread sets
Abstract
Some new results on symplectic translation planes are given using their representation by spread sets of symmetric matrices. We provide a general construction of symplectic planes of even order and then consider the special case of planes of order
with kernel containing
, stressing the role of Brown's theorem on ovoids containing a conic section. In particular we provide a criterion for a symplectic plane of even order
with kernel containing
to be desarguesian. As a consequence we prove that a symplectic plane of even order
with kernel containing
and admitting an affine homology of order
or a Baer involution fixing a totally isotropic
-subspace is desarguesian. Finally a short proof that symplectic semifield planes of even order
with kernel containing
are desarguesian is given.
![q^2](http://212.189.136.205/plugins/generic/latexRender/cache/16db377156b6a727777f391bcbe853c0.png)
![\GF(q)](http://212.189.136.205/plugins/generic/latexRender/cache/0ab9463a38c0c1de69ae0bd7e2e478f4.png)
![q^2](http://212.189.136.205/plugins/generic/latexRender/cache/16db377156b6a727777f391bcbe853c0.png)
![\GF(q)](http://212.189.136.205/plugins/generic/latexRender/cache/0ab9463a38c0c1de69ae0bd7e2e478f4.png)
![q^2](http://212.189.136.205/plugins/generic/latexRender/cache/16db377156b6a727777f391bcbe853c0.png)
![\GF(q)](http://212.189.136.205/plugins/generic/latexRender/cache/0ab9463a38c0c1de69ae0bd7e2e478f4.png)
![q-1](http://212.189.136.205/plugins/generic/latexRender/cache/6fae656ff6535f6bdcf04189cbf2cef9.png)
![2](http://212.189.136.205/plugins/generic/latexRender/cache/c81e728d9d4c2f636f067f89cc14862c.png)
![q^2](http://212.189.136.205/plugins/generic/latexRender/cache/16db377156b6a727777f391bcbe853c0.png)
![\GF(q)](http://212.189.136.205/plugins/generic/latexRender/cache/0ab9463a38c0c1de69ae0bd7e2e478f4.png)
DOI Code:
10.1285/i15900932v29n1supplp153
Keywords:
translation plane; symplectic spread; line-oval; affine homology; Baer involution
translation plane; symplectic spread; line-oval; affine homology; Baer involution
Full Text: PDF