On a class of rational matrices and interpolating polynomials related to the discrete Laplace operator
Abstract
Let
be the discrete Laplace operator acting on functions(or rational matrices)
,where
is the two dimensional lattice of size
embedded in
. Consider a rational
matrix
, whose inner entries
satisfy
. The matrix
is thus theclassical finite difference five-points approximation of theLaplace operator in two variables. We give a constructive proofthat
is the restriction to
of adiscrete harmonic polynomial in two variables for any
. Thisresult proves a conjecture formulated in the context ofdeterministic fixed-energy sandpile models in statisticalmechanics.
![\dlap](http://212.189.136.205/plugins/generic/latexRender/cache/aeb43879dccee3fa48627808d12e3f3b.png)
![f:\mathbf{Q}_L\rightarrow\mathbb{Q}](http://212.189.136.205/plugins/generic/latexRender/cache/3711528ec213990f4360ded4eb23b4a9.png)
![\mathbf{Q}_L](http://212.189.136.205/plugins/generic/latexRender/cache/0c16d31419ea63d9fd5677b387d997fd.png)
![L](http://212.189.136.205/plugins/generic/latexRender/cache/d20caec3b48a1eef164cb4ca81ba2587.png)
![\mathbb{Z}_2](http://212.189.136.205/plugins/generic/latexRender/cache/aeab2a60e0268f50c685c9ed5b738caf.png)
![L\times L](http://212.189.136.205/plugins/generic/latexRender/cache/091bf48a2dfee2db3fbda9b92bcc3d0e.png)
![\mathcal{H}](http://212.189.136.205/plugins/generic/latexRender/cache/6799f18bc6e3025d6c3434cd6936735d.png)
![\mathcal{H}_{ij}](http://212.189.136.205/plugins/generic/latexRender/cache/2e4b90a26a790eccfe0560ec13187359.png)
![\dlap\mathcal{H}_{ij}=0](http://212.189.136.205/plugins/generic/latexRender/cache/40f0716750bbc56167d64e2c8d5c4fc3.png)
![\mathcal{H}](http://212.189.136.205/plugins/generic/latexRender/cache/6799f18bc6e3025d6c3434cd6936735d.png)
![\mathcal{H}](http://212.189.136.205/plugins/generic/latexRender/cache/6799f18bc6e3025d6c3434cd6936735d.png)
![\mathbf{Q}_L](http://212.189.136.205/plugins/generic/latexRender/cache/0c16d31419ea63d9fd5677b387d997fd.png)
![L>2](http://212.189.136.205/plugins/generic/latexRender/cache/9c84f4220c69c03715679269c2aefa12.png)
DOI Code:
10.1285/i15900932v28n2p1
Keywords:
rational matrices; discrete Laplacian; discrete harmonic polynomials; sandpile
Classification:
11C99 (Polynomials and matrices)
Full Text: PDF