On groups with many subgroups satisfying a transitive normality relation
Abstract
A group
is said to be a
-group if normality in
is a transitive relation. Clearly, as a simple group has the property
, it follows that
is not subgroup closed. A group
is called a
-group if all its subgroups are
-groups. In this note the structure of groups all of whose (proper) subgroups either are nilpotent or satisfy the property
will be investigated.
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\bar T](http://212.189.136.205/plugins/generic/latexRender/cache/80fe66c7d8955c0f29aa2f316e9a8624.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![\bar T](http://212.189.136.205/plugins/generic/latexRender/cache/80fe66c7d8955c0f29aa2f316e9a8624.png)
DOI Code:
10.1285/i15900932v44n1p45
Keywords:
$T$-group; nilpotent group; Fitting subgroup
Full Text: PDF