Genus One Almost Simple Groups of Lie Rank Two
Abstract
In this paper, we assume that
is a finite group with socle
and
acts on the projective points of 2-dimensional projective geometry
,
is a prime power. By using a new method, we show that
possesses no genus one group if
. Furthermore, we study the connectedness of the Hurwitz space
for a given group
, genus one and
.
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![PSL(3,q)](http://212.189.136.205/plugins/generic/latexRender/cache/56e2471771c1fb4a4e4bf52e0cbcd28d.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![PG(2,q)](http://212.189.136.205/plugins/generic/latexRender/cache/0b78f77ae85a50f0ced942e1148f80ae.png)
![q](http://212.189.136.205/plugins/generic/latexRender/cache/7694f4a66316e53c8cdd9d9954bd611d.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![q>13](http://212.189.136.205/plugins/generic/latexRender/cache/283f3e03dffa78d5d45462089cc86e1d.png)
![\mathcal{H}^{in}_{r}(G)](http://212.189.136.205/plugins/generic/latexRender/cache/5485657c06780ddb3dc91079c200386e.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![q\leq 13](http://212.189.136.205/plugins/generic/latexRender/cache/762b8a2a1a21682e21003cfbe8e24047.png)
DOI Code:
10.1285/i15900932v43n2p67
Keywords:
Projective special linear group; Fixed point ratio; Genus one group
Full Text: PDF