inequalities for the derivative of a polynomial
Abstract
Let
be a polynomial of degree
having no zero in
,
, then Govil [Proc. Nat. Acad. Sci.,
, (1980), 50-52] proved
,
provided
and
attain their maxima at the same point on the circle
, where
.
In this paper, we not only obtain an integral mean inequality for the above inequality but also extend an improved version of it into
norm.
![p(z)](http://212.189.136.205/plugins/generic/latexRender/cache/c07f09e1ca3053942a3e035409faa7c0.png)
![n](http://212.189.136.205/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![|z|< k](http://212.189.136.205/plugins/generic/latexRender/cache/2614493e676a7fd79c6a8b6debce1784.png)
![k\leq 1](http://212.189.136.205/plugins/generic/latexRender/cache/57865ecc56bb1c7bd56ab6bbfab13180.png)
![\textbf{50}](http://212.189.136.205/plugins/generic/latexRender/cache/b0d757cf36d29356b7afbf71626b7bc9.png)
![\max\limits_{|z|=1}|p'(z)|\leq \dfrac{n}{1+k^{n}}\max\limits_{|z|=1}|p(z)|](http://212.189.136.205/plugins/generic/latexRender/cache/5ed71682233d2cba9f9d5b27be5419a8.png)
provided
![|p'(z)|](http://212.189.136.205/plugins/generic/latexRender/cache/0ce50f26bbfb9ef9c9a3424d609949b6.png)
![|q'(z)|](http://212.189.136.205/plugins/generic/latexRender/cache/a2ce952ff94bdfc6af133b70d17b1069.png)
![|z|=1](http://212.189.136.205/plugins/generic/latexRender/cache/3fc592e1ce11e6442a631847779aeded.png)
![\label{A}q(z)=z^{n}\overline{p\left(\frac{1}{\overline{z}}\right)}](http://212.189.136.205/plugins/generic/latexRender/cache/aa998b5754f244fc4a35ac4fa5448db6.png)
In this paper, we not only obtain an integral mean inequality for the above inequality but also extend an improved version of it into
![L^{r}](http://212.189.136.205/plugins/generic/latexRender/cache/173b1d355f789ed62858a7b6e60e9f97.png)
DOI Code:
10.1285/i15900932v41n2p19
Keywords:
Inequalities; Polynomials; Zeros; Maximum modulus; Lr norm
Full Text: PDF