Some properties of the mapping
introduced by a representation in Banach and locally convex spaces
Abstract
Let
be a representation of a semigroup
. We show that the mapping
introduced by a mean on a subspace of
inherits some properties of
in Banach spaces and locally convex spaces. The notions of
-
-nonexpansive mapping and
-
-attractive point in locally convex spaces are introduced. We prove that
is a
-
-nonexpansive mapping when
is
-
-nonexpansive mapping for each
and a point in a locally convex space is
-
-attractive point of
if it is a
-
-attractive point of
.
![\mathcal{S}=\{T_{s}:s\in S\}](http://212.189.136.205/plugins/generic/latexRender/cache/bafd295c3fdf4066ad7c7025cca92cf7.png)
![S](http://212.189.136.205/plugins/generic/latexRender/cache/5dbc98dcc983a70728bd082d1a47546e.png)
![T_{\mu}](http://212.189.136.205/plugins/generic/latexRender/cache/e30bd8b9d5e3223de7e545a90b28c1ea.png)
![l^{\infty}(S)](http://212.189.136.205/plugins/generic/latexRender/cache/f3fe1972e68fa2dd6602d81f00992855.png)
![\mathcal{S}](http://212.189.136.205/plugins/generic/latexRender/cache/8c23ba2a8d48c14bf5005d01cc230aac.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![T_{\mu}](http://212.189.136.205/plugins/generic/latexRender/cache/e30bd8b9d5e3223de7e545a90b28c1ea.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![T_{s}](http://212.189.136.205/plugins/generic/latexRender/cache/7982e3501002a129d3be46449ae95129.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![s\in S](http://212.189.136.205/plugins/generic/latexRender/cache/a15fda5331218e41f76a749880c5c2f8.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![T_{\mu}](http://212.189.136.205/plugins/generic/latexRender/cache/e30bd8b9d5e3223de7e545a90b28c1ea.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\mathcal{S}](http://212.189.136.205/plugins/generic/latexRender/cache/00e040d159567545fcc73346bcede176.png)
DOI Code:
10.1285/i15900932v40n1p101
Keywords:
Representation; Nonexpansive; Attractive point; Directed graph; Mean
Full Text: PDF