On
-quasi class
Operators
Abstract
Let
be a bounded linear operator on a complex Hilbert space
. In this paper we introduce a new class of operators:
-quasi class
operators, superclass of
-quasi paranormal operators. An operator
is said to be
-quasi class
if it satisfies
and for some nonnegative integers
and
. We prove the basic structural properties of this class of operators. It will be proved that If
has a no non-trivial invariant subspace, then the nonnegative operator
-quasi class
does not have SVEP property. In the last section we also characterize the
-quasi class
composition operators on Fock spaces.
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![H](http://212.189.136.205/plugins/generic/latexRender/cache/c1d9f50f86825a1a2302ec2449c17196.png)
![(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/13be0c14eaff4ce2fa73860c7e5931aa.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/13be0c14eaff4ce2fa73860c7e5931aa.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
![(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/13be0c14eaff4ce2fa73860c7e5931aa.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
for all
![x\in H](http://212.189.136.205/plugins/generic/latexRender/cache/9f18fd44308ae8059634770fc82424a0.png)
![n](http://212.189.136.205/plugins/generic/latexRender/cache/7b8b965ad4bca0e41ab51de7b31363a1.png)
![k](http://212.189.136.205/plugins/generic/latexRender/cache/8ce4b16b22b58894aa86c421e8759df3.png)
![T](http://212.189.136.205/plugins/generic/latexRender/cache/b9ece18c950afbfa6b0fdbfa4ff731d3.png)
is a strongly stable contraction. In section 4, we give some examples which compare our class with other known classes of operators and as a consequence we prove that
![(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/13be0c14eaff4ce2fa73860c7e5931aa.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
![(n,k)](http://212.189.136.205/plugins/generic/latexRender/cache/13be0c14eaff4ce2fa73860c7e5931aa.png)
![Q](http://212.189.136.205/plugins/generic/latexRender/cache/f09564c9ca56850d4cd6b3319e541aee.png)
DOI Code:
10.1285/i15900932v39n2p39
Keywords:
$(n,k)$-quasi class $Q$; $(n,k)$-quasi paranormal operators; SVEP property; Fock space; composition operators
Full Text: PDF