Hall Graph of a Finite Group
Abstract
The Hall graph of a finite group
is a simple graph whose vertex set is
, the set of all prime divisors of its order, and two distinct primes
and
are joined by an edge if
has at least one Hall
-subgroup. For all primes
of
, we call the
-tuple
, the degree pattern of Hall graph of
, where
signifies the degree of vertex
. This paper provides some properties of Hall graph. It also gives a characterization for some finite simple groups via order and degree pattern of Hall graph.
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\pi(G)](http://212.189.136.205/plugins/generic/latexRender/cache/9c11ef1497b40f27c4ef027ce8211442.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![q](http://212.189.136.205/plugins/generic/latexRender/cache/7694f4a66316e53c8cdd9d9954bd611d.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\{p, q\}](http://212.189.136.205/plugins/generic/latexRender/cache/6cdd5542a676203aa673ecf542efea91.png)
![p_1<\cdots<p_k](http://212.189.136.205/plugins/generic/latexRender/cache/076bb21dfff3e47e78be023e64fb290b.png)
![\pi(G)](http://212.189.136.205/plugins/generic/latexRender/cache/9c11ef1497b40f27c4ef027ce8211442.png)
![k](http://212.189.136.205/plugins/generic/latexRender/cache/8ce4b16b22b58894aa86c421e8759df3.png)
![{\rm D}_{\rm H}(G)=(d_{\rm H}(p_1), \ldots, d_{\rm H}(p_k))](http://212.189.136.205/plugins/generic/latexRender/cache/8f1a9e6884a908878a40f0a23b9ad3fb.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![d_{\rm H}(p)](http://212.189.136.205/plugins/generic/latexRender/cache/4a107feeaadc4c3ca653239c71057bac.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
DOI Code:
10.1285/i15900932v39n2p25
Keywords:
Hall graph; degree pattern of Hall graph; Hall subgroup; simple group
Full Text: PDF