A note on groups with restrictions on centralizers of in nite index
Abstract
A group
is said to be an {\it
-group} if for each element
of
, either
has finitely many conjugates or the factor group
is finite. In this survey article some results concerning
-groups and minimal-non-
groups are collected
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![AFC](http://212.189.136.205/plugins/generic/latexRender/cache/b3ba8c7adfb0e850599c37e497312f63.png)
![x](http://212.189.136.205/plugins/generic/latexRender/cache/9dd4e461268c8034f5c8564e155c67a6.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![x](http://212.189.136.205/plugins/generic/latexRender/cache/9dd4e461268c8034f5c8564e155c67a6.png)
![C_G(x)/\cyc x](http://212.189.136.205/plugins/generic/latexRender/cache/50253a7e770528de50027acc4a9a2fa1.png)
![AFC](http://212.189.136.205/plugins/generic/latexRender/cache/b3ba8c7adfb0e850599c37e497312f63.png)
![AFC](http://212.189.136.205/plugins/generic/latexRender/cache/b3ba8c7adfb0e850599c37e497312f63.png)
DOI Code:
10.1285/i15900932v36suppl1p1
Keywords:
$AFC$-group; minimal-non-$AFC$ group; $FC$-centre
Full Text: PDF