A Quantitative Characterization of Some Finite Simple Groups Through Order and Degree Pattern
Abstract
Let
be a finite group with
, where
are prime numbers and
are natural numbers. The prime graph
of
is a simple graph whose vertex set is
and two distinct primes
and
are joined by an edge if and only if
has an element of order
. The degree
of a vertex
is the number of edges incident on
, and the
-tuple
is called the degree pattern of
. We say that the problem of OD-characterization is solved for a finite group
if we determine the number of pairwise non-isomorphic finite groups with the same order and degree pattern as
. The purpose of this paper is twofold. First, it completely solves the OD-characterization problem for every finite non-Abelian simple groups their orders having prime divisors at most 17. Second, it provides a list of finite (simple) groups for which the problem of OD-characterization have been already solved.
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![|G|=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_h^{\alpha_h}](http://212.189.136.205/plugins/generic/latexRender/cache/139e6fdd0443145d80c54c2a63b2a787.png)
![p_1<p_2<\cdots<p_h](http://212.189.136.205/plugins/generic/latexRender/cache/bb89acff7458bfc7ed5d22fc3febc902.png)
![\alpha_1, \alpha_2, \ldots, \alpha_h, h](http://212.189.136.205/plugins/generic/latexRender/cache/77b3641133928a9c38518120dc5a81fb.png)
![\Gamma(G)](http://212.189.136.205/plugins/generic/latexRender/cache/b2bf31248657c74647b5fba90848c885.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![\{p_1, p_2, \ldots, p_h\}](http://212.189.136.205/plugins/generic/latexRender/cache/95cc401d9ad9da136c5e1eff12f21795.png)
![p_i](http://212.189.136.205/plugins/generic/latexRender/cache/eca91c83a74a2373ca5f796700e99fd3.png)
![p_j](http://212.189.136.205/plugins/generic/latexRender/cache/8b6f59f2af8f45b773cb64ac76c9b095.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![p_ip_j](http://212.189.136.205/plugins/generic/latexRender/cache/82e32120068319f0756b75dffef6a5fb.png)
![{\rm deg}_G(p_i)](http://212.189.136.205/plugins/generic/latexRender/cache/6026d364e24e8da4e95a123b7f61cd07.png)
![p_i](http://212.189.136.205/plugins/generic/latexRender/cache/eca91c83a74a2373ca5f796700e99fd3.png)
![p_i](http://212.189.136.205/plugins/generic/latexRender/cache/eca91c83a74a2373ca5f796700e99fd3.png)
![h](http://212.189.136.205/plugins/generic/latexRender/cache/2510c39011c5be704182423e3a695e91.png)
![({\rm deg}_G(p_1), {\rm deg}_G(p_2), \ldots, {\rm deg}_G(p_h))](http://212.189.136.205/plugins/generic/latexRender/cache/789f6c83f37fb536b2b3353ec7b71ef5.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
![G](http://212.189.136.205/plugins/generic/latexRender/cache/dfcf28d0734569a6a693bc8194de62bf.png)
DOI Code:
10.1285/i15900932v34n2p91
Keywords:
Prime graph; degree pattern; OD-characterization
Full Text: PDF