Maximal sector of analyticity for
-semigroups generated by elliptic operators with separation property in ![L^{p}](http://212.189.136.205/plugins/generic/latexRender/cache/1a4dfc75a9c0468782c5153baddd4671.png)
Abstract
Analytic continuation of the
-semigroup
on
generated by the second order elliptic operator
is investigated, where
is formally defined by the differential expression
and the lower order coefficients have singularities at infinity or at the origin. \end
![C_{0}](http://212.189.136.205/plugins/generic/latexRender/cache/d24fd2d83d8cae85cf655d3b5bba1a15.png)
![\{e^{-zA}\}](http://212.189.136.205/plugins/generic/latexRender/cache/44891faf58abda1ebf0b041de114263d.png)
![L^{p}(\mathbb{R}^{N})](http://212.189.136.205/plugins/generic/latexRender/cache/e7657498e4be5022c5f62ba5ea0d1df2.png)
![- A](http://212.189.136.205/plugins/generic/latexRender/cache/76478505089e631561e158929b12d203.png)
![A](http://212.189.136.205/plugins/generic/latexRender/cache/7fc56270e7a70fa81a5935b72eacbe29.png)
![Au = -{\rm div}(a{\nabla}u) + (F\cdot{\nabla})u + Vu](http://212.189.136.205/plugins/generic/latexRender/cache/e9681b5f520ae98fd65ae476486c1929.png)
DOI Code:
10.1285/i15900932v33n2p65
Keywords:
Second order linear elliptic operators in $L^{p}$; analytic $C_{0}$-semigroups; maximal sectors of analyticity
Full Text: PDF