Weak
closures and derived sets in dual Banach spaces
Abstract
The main results of the paper: \textbf{(1)} The dual Banach space
contains a linear subspace
such that the set
of all limits of weak
convergent bounded nets in
is a proper norm-dense subset of
if and only if
is a non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual. \textbf{(2)} Let
be a non-reflexive Banach space. Then there exists a convex subset
such that
(the latter denotes the weak
closure of
). \textbf{(3)} Let
be a quasi-reflexive Banach space and
be an absolutely convex subset. Then
.
![X^*](http://212.189.136.205/plugins/generic/latexRender/cache/18b5c459d9acf84628fa39c81c689b23.png)
![A\subset X^*](http://212.189.136.205/plugins/generic/latexRender/cache/964c1fcd75f675753842b06f1861b8f6.png)
![A^{(1)}](http://212.189.136.205/plugins/generic/latexRender/cache/889935cdb8b669969c9aa8cd7edc2cc1.png)
![^*](http://212.189.136.205/plugins/generic/latexRender/cache/c4180aa939961e017818f34db4bbcd9f.png)
![A](http://212.189.136.205/plugins/generic/latexRender/cache/7fc56270e7a70fa81a5935b72eacbe29.png)
![X^*](http://212.189.136.205/plugins/generic/latexRender/cache/18b5c459d9acf84628fa39c81c689b23.png)
![X](http://212.189.136.205/plugins/generic/latexRender/cache/02129bb861061d1a052c592e2dc6b383.png)
![X](http://212.189.136.205/plugins/generic/latexRender/cache/02129bb861061d1a052c592e2dc6b383.png)
![A\subset X^*](http://212.189.136.205/plugins/generic/latexRender/cache/964c1fcd75f675753842b06f1861b8f6.png)
![A^{(1)}\neq {\overline{A}\,}^*](http://212.189.136.205/plugins/generic/latexRender/cache/746e65e2493a7036a12e77c56b433167.png)
![^*](http://212.189.136.205/plugins/generic/latexRender/cache/c4180aa939961e017818f34db4bbcd9f.png)
![A](http://212.189.136.205/plugins/generic/latexRender/cache/7fc56270e7a70fa81a5935b72eacbe29.png)
![X](http://212.189.136.205/plugins/generic/latexRender/cache/02129bb861061d1a052c592e2dc6b383.png)
![A\subset X^*](http://212.189.136.205/plugins/generic/latexRender/cache/964c1fcd75f675753842b06f1861b8f6.png)
![A^{(1)}={\overline{A}\,}^*](http://212.189.136.205/plugins/generic/latexRender/cache/9bc62530f02bc5ab8f1f35ab4dfcb228.png)
DOI Code:
10.1285/i15900932v31n1p129
Keywords:
norming subspace ; quasi-reflexive Banach space ; total subspace ; weak$^*$ closure ; weak$^*$ derived set ; weak$^*$ sequential closure
Full Text: PDF