Primes modulo which almost all Fermat numbers are primitive roots
Abstract
A prime
is called elite, or anti-elite, when all but finitely many Fermat numbers are quadratic nonresidues or residues, respectively, modulo
. It is known that if the multiplicative order of 2 modulo
is of the form
, where
, then the prime
is either elite or anti-elite. Modulo elite primes of this kind, we describe some criteria by which all sufficiently large Fermat numbers be primitive roots, or all nonprimitive roots.
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
![2^s\times 5](http://212.189.136.205/plugins/generic/latexRender/cache/c93dcf867f3f0fe3c36d3ac325ab9f88.png)
![s\geq 2](http://212.189.136.205/plugins/generic/latexRender/cache/3e6eea6c4dcbe4d41318601875002ad3.png)
![p](http://212.189.136.205/plugins/generic/latexRender/cache/83878c91171338902e0fe0fb97a8c47a.png)
DOI Code:
10.1285/i15900932v30n1p133
Keywords:
elite primes; Fermat numbers
elite primes; Fermat numbers
Classification:
11A07, 11A41
Full Text: PDF