Forecasting the number of vehicles thefts in Campinas/Brazil using a Generalized Linear Autoregressive Moving Average model


Abstract


By definition, thefts are considered the act of taking away other people's mobile possessions for personal use or for others, affecting crime rates, economic indicators and enabling recent studies to create risk zones in society, contributing to insurance pricing in actuarial methods. This paper analyzes the number of vehicle thefts of 38 locations near Campinas/São Paulo, Brazil, using a GLARMA(p,q) model with Poisson and Negative Binomial response. The main feature of GLARMA(p,q) is to consider the peculiarities of counting data as high dispersion. As a result, it was possible to verify the adequacy and usefulness of the model for counting data. With specific techniques for estimating time series related to the public security area, patterns can be better understood, revealing relevant information that can be added to decision-making processes to direct public policies.

DOI Code: 10.1285/i20705948v15n1p110

Keywords: ctuary, Brazil, glarma model, thefts, vehicles.

References


Benjamin, A., R. A. and Stasinopoulos, M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association, 461(98):214–223.

Bian, Y., Y. C. Z. J. and Liang, L. (2018). Good drivers pay less: A study of usage-based vehicle insurance models. Transportation Research Part A, 107:20–34.

Box, G. and Jenkins, G. (1976). Time series analysis, forecasting and control. HoldenDay.

Brasil, B. (1940). Decreto lei no 2.848, de 07 de dezembro de 1940.

Casella, G. and Berger, R. (2014). Inferência Estatística. Cengage Learning.

Chung, J. and Kim, H. (2018). Crime risk maps: A multivariate spatial analysis of crime data. Geographical Analysis, 51(4):1–25.

Cox, D. (1981). Statistical analysis of time series: Some recent developments. Scandinavian Journal of Statistics, 8:93–115. 12

Czado, C., G. T. and Held, L. (2009). Predictive model assessment for count data. Journal of the International Biometric Societ, 65(4).

Davis, R., D. W. and Streett, S. (2003). Observation-driven model for poisson counts. Biometrika, 90(4):777–790.

Davis, R., D. W. and Wang, Y. (1999). Modelling time series of count data. In S. Ghosh, editor, asymptotics, nonparametric Time Series.

Marcel Dekker. Davis, R., D. W. and Wang, Y. (2000). On autocorrelation in a poisson regression model. Biometrika, 87:491–505.

Denuit, M., M. X. P. S. and Walhin, J. (2007). Actuarial modelling of claim counts: risk classification, credibility and bonus-malus systems. Wiley.

Dunsmuir, W., L. C. and Scott, D. (2018). Glarma: Generalized Linear Autoregressive Moving Average Models.

Dunsmuir, W. (2016). Generalized Linear Autoregressive Moving Average Models. In: RICHARD, Davis (ed.). Handbook of Discrete-Valued Time Series. Chapman Hall.

Dunsmuir, W. and Scott, D. (2015). The glarma package for observation-driven time series regression of counts. Journal of Statistical Software, 67(7):1–36.

Filho, L. (2004). Distribuição espacial da violência em campinas: uma análise por geoprocessamento. PhD thesis, UFRJ.

Filho, A., Z. G. and Guedes, E. (2018). An´alise temporal das subtrações de veículos em salvador (ba). Conjuntura Planejamento, 193:47–61.

Freitas, T., C. A. and Gon¸calves, G. (2017). A estimação do Índice geral de criminalidade (igcrime) para os municípios do rio grande do sul. Ensaios FEE, 38(3):499–520.

Gonçalves, A. (2008). Geografia dos furtos de veículos em belo horizonte/minas gerais. Master’s thesis, Pontifícia Universidade Católica de Minas Gerais.

Grzadkowska, A. (2018). What is usage-based insurance? Li, K. (1994). Time series models based on generalized linear models: Some further results. Biometrics, 50:506–511.

Mao, Y., D. S. D. J. Z. W. W. C. and Ye, X. (2018). Space–time analysis of vehicle theft patterns in shanghai, china. International Journal of Information, 7(9).

Mckenzie, E. (1988). Some arma models for dependent sequences of poisson counts. Advances in Applied Probability, 20:822–835.

Morettin, P. and Toloi, C. (2006). Análise de s´eries temporais. Blucher.

Morettin, P. and Toloi, C. (2018). An´alise de s´eries temporais: Modelos lineares univariados. Blucher.

Mukhopadhyay, A., T. R. S. P. G. N. and Thatte, U. (2019). Modeling and forecasting indian malaria incidence using generalized time series models. Communications in Statistics: case studies, data analysis and applications, 5(2).

Napoleão, P. (2005). Criminalidade urbana e condi¸c˜oes de vida na regi˜ao administrativa de campinas (sp) no ano de 2000: Uma análise espacial. Master’s thesis, Universidade Estadual Paulistas.

Nelder, J. and Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society: Series A, 135(3):370–384.

Nunley, J., S. M. S. R. and Zietz, J. (2015). The impact of inflation on property crime. Contemporary Economic Policy, 34(2):483–499.

OECD, O. f. E. C. a. D. (2019). Regional social and environmental indicators: safety in regions.

Petukhova, T., O. D. M. B. D. R. and Z., P. (2018). Assessment of autoregressive integrated moving average (arima), generalized linear autoregressive moving average (glarma), and random forest (rf) time series regression models for predicting influenza a virus frequency in swine in ontario, canada. PLoS ONE, 13(6).

Schmeiser, H., S. T. and Wagner, J. (2014). Unisex insurance pricing: Consumers perception and market implications. The Geneva Papers, 39:322–350.

Shephard, N. (1995). Generalized linear autoregressions. Economics Papers, 8. Shumway, R. and Stoffer, D. (2006). Time series analysis and its applications with R examples. Springer.

Silva, C. (2015). Determinantes da vitimização do brasil. Revista cadernos de economia, 19:30–46. SSP, S. d. S. P. d. E. d. S. P. (2020). Estatísticas.

Team, R. C. (2020). R: A Language and Environment for Statistical Computing.

Teixeira, F. and Scalon, J. (2016). A dependência espacial do valor do prêmio de automóvel.

Revista Brasileira de risco e seguro, 20(11):20–54.

Vuji´c, S., C. J. and Koopman, S. (2016). Intervention time series analysis of crime rates: The case of sentence reform in virginia. Economic Modelling, 57:311–323.

Zeger, S. (1988). A regression model for time series of counts. Biometrika, 75(4):621–629.

Zhou, L., C. Q. L. Z. Z. H. and Chen, C. (2017). Speed-based location tracking in usage-based automotive insurance. IEEE 37th International Conference on Distributed Computing Systems, pages 2252–2257.


Full Text: pdf
کاغذ a4

Creative Commons License
This work is licensed under a Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia License.