Associated kernel discriminant analysis for multivariate mixed data
Abstract
count. The method consists of using a product of adapted univariate associated kernels and an estimate of the misclassication rate. A new prole version cross-validation procedure of bandwidth matrices selection is introduced for multivariate mixed data, while a classical cross-validation is used for homogeneous data sets having the same reference measures. Simulations and validation results show the relevance of the proposed method. The method has been validated on real coronary heart disease data in comparison to the classical kernel discriminant analysis.
References
Aitchison, J. and Aitken, C.G.G. (1976). Multivariate binary discrimination by the kernel
method. Biometrika 63(3):413-420.
Antoniadis, A. (1997). Wavelets in statistics: a review (with discussion), Journal of the
Italian Statistical Society SeriesB 6(2):97-144.
Bouezmarni, T. and Rombouts, J.V.K. (2010). Nonparametric density estimation for
multivariate bounded data, Journal of Statistical Planning and Inference 140(1):139-
Chen, S.X. (1999). A beta kernel estimation for density functions, Computational Statis-
tics and Data Analysis 31(2):131-145.
Chen, S.X. (2000). Probability density function estimation using gamma kernels, Annals
of the Institute of Statistical Mathematics 52(3):471-480.
Duong, T. (2004). Bandwidth Selectors for Multivariate Kernel Density Estimation.
Ph.D. Thesis Manuscript to University of Western Australia, Perth, Australia, Oc-
tober 2004.
Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for
multivariate data in R, Journal of Statistical Software 21(7):1-16.
Gosh, A.K. and Chaudhury, P. (2004). Optimal smoothing in kernel analysis discrimi-
nant, Statistica Sinica 14(2):457-483.
Gosh, A.K. and Hall, P. (2008). On error-rate estimation in nonparametric classiffication,
Statistica Sinica 18:1081{1100.
Gu, C. (1993). Smoothing spline density estimation: A dimensionless automatic algo-
rithm. Journal of the American Statistical Association 88(422):495-504.
Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning,
Springer, New York.
Hall, P. and Wand, M.P. (1988). On nonparametric discrimination using density differ-
ences. Biometrika 75(3):541-547.
Halvorsen, K. (2015). ElemStatLearn: Data sets, functions and examples from
the book: The Elements of Statistical Learning, Data Mining, Inference, and
Prediction" by Trevor Hastie, Robert Tibshirani and Jerome Friedman, URL
http://cran.r-project.org/web/packages/ElemStatLearn/index.html.
Hayfield, T. and Racine, J.S. (2007). Nonparametric econometrics: the np package,
Journal of Statistical Software 27(5):1-32.
Igarashi, G. and Kakizawa, Y. (2015). Bias correction for some asymmetric kernel esti-
mators, Journal of Statistical Planning and Inference 159:37-63.
Full Text: pdf