Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings
Abstract
References
Alvo, M. and Yu, P. L. (2014). Statistical Methods for Ranking Data. Springer.
Amodio, S., D'Ambrosio, A., and Siciliano, R. (2015). Accurate algorithms for identifying
the median ranking when dealing with weak and partial rankings under
the kemeny axiomatic approach. European Journal of Operational Research. doi:
http://dx.doi.org/10.1016/j.ejor.2015.08.048.
Bartholdi III, J., Tovey, C. A., and Trick, M. A. (1989). Voting schemes for which it can
be dicult to tell who won the election. Social Choice and welfare, 6(2):157-165.
Borg, I., Groenen, P. J., and Mair, P. (2012). Applied multidimensional scaling. Springer
Science & Business Media.
Brusco, M. J. and Stahl, S. (2006). Branch-and-bound applications in combinatorial data
analysis. Springer Science & Business Media.
Busing, F. M., Heiser, W. J., and Cleaver, G. (2010). Restricted unfolding: Preference
analysis with optimal transformations of preferences and attributes. Food quality and
preference, 21(1):82-92.
Carroll, J. D. (1972). Individual dierences and multidimensional scaling. Multidimensional scaling: Theory and applications in the behavioral sciences, 1:105-155.
Clausen, J. (1999). Branch and bound algorithms-principles and examples. Department
of Computer Science, University of Copenhagen, pages 1-30.
Condorcet, M. (1785). Essai sur l'application de l'analyse à la probabilité des décisions
rendues à la pluralitè des voix. L'imprimerie royale.
Contucci, P., Panizzi, E., Ricci-Tersenghi, F., and Sirbu, A. (2015). Egalitarianism in
the rank aggregation problem: a new dimension for democracy. Quality & Quantity,
pages 1-16.
Cook, W. D. (2006). Distance-based and ad hoc consensus models in ordinal preference
ranking. European Journal of Operational Research, 172(2):369-385.
Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological review, 57(3):145.
Coombs, C. H. (1964). A theory of data.
Critchlow, D. E., Fligner, M. A., and Verducci, J. S. (1991). Probability models on
rankings. Journal of mathematical psychology, 35(3):294-318.
Croon, M. A. (1989). Latent class models for the analysis of rankings. Advances in
psychology, 60:99-121.
D'Ambrosio, A. and Amodio, S. (2015). ConsRank, Compute the Median Ranking(s)
According to the Kemeny's Axiomatic Approach. R package version 1.0.2. https:
//cran.r-project.org/web/packages/ConsRank/index.html/.
D'Ambrosio, A. and Heiser, W. J. (2009). Decision trees for preference rankings. In
Procceedings of the 7th Meeting of the Classification and Data Analysis Group, Catania
- Italy, pages 133{136. CLEUP-Padova.
D'Ambrosio, A. and Heiser, W. J. (2015). A recursive partitioning method for the
prediction of preference rankings based upon kemeny distances. Technical report,
University of Naples Federico II. Submitted manuscript.
de Borda, J. C. (1781). Mèmoire sur les èlections au scrutin.
Deza, M. M. and Deza, E. (2009). Encyclopedia of distances. Springer.
Diaconis, P. (1988). Group representations in probability and statistics. Lecture Notes-
Monograph Series, pages i-192.
Emond, E. J. and Mason, D. W. (2002). A new rank correlation coecient with application
to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis,
(1):17-28.
Fligner, M. A. and Verducci, J. S. (1986). Distance based ranking models. Journal of
the Royal Statistical Society. Series B (Methodological), pages 359-369.
Fligner, M. A. and Verducci, J. S. (1988). Multistage ranking models. Journal of the
American Statistical association, 83(403):892-901.
Garca-Lapresta, J. L. and Pèrez-Romàn, D. (2010). Consensus measures generated by
weighted kemeny distances on weak orders. In Procceedings of the 10th International
Conference on Intelligent Systems Design and Applications, Cairo.
Gormley, I. C. and Murphy, T. B. (2008). Exploring voting blocs within the irish electorate:
A mixture modeling approach. Journal of the American Statistical Association,
(483):1014-1027.
Greenho, K. and MacFie, H. (1994). Preference mapping in practice. In Measurement
of food preferences, pages 137-166. Springer.
Heiser, W. J. (2004). Geometric representation of association between categories. Psychometrika, 69(4):513-545.
Heiser, W. J. and D'Ambrosio, A. (2013). Clustering and prediction of rankings within
a kemeny distance framework. In Algorithms from and for Nature and Life, pages
-31. Springer.
Heiser, W. J. and D'Ambrosio, A. (2014). K-median cluster component analysis. Technical report, University of Naples Federico II. Submitted manuscript.
Heiser, W. J. and De Leeuw, J. (1981). Multidimensional mapping of preference data.
Mathèmatiques et Sciences humaines, 73:39-96.
Jarvelin, K. and Kekalainen, J. (2002). Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422-446.
Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88(4):577-591.
Kendall, M. G. (1948). Rank correlation methods. Griffin.
Mallows, C. L. (1957). Non-null ranking models. i. Biometrika, pages 114-130.
Marden, J. I. (1996). Analyzing and modeling rank data. CRC Press.
Murphy, T. B. and Martin, D. (2003). Mixtures of distance-based models for ranking
data. Computational statistics & data analysis, 41(3):645-655.
Pagliuca, M. M. and Scarpato, D. (2011). Food quality, consumer perception and preferences:
an analysis on olive oil. Electronic Journal of Applied Statistical Analysis,
(2):215-226.
Shieh, G. S. (1998). A weighted kendall's tau statistic. Statistics & Probability Letters,
(1):17-24.
Shieh, G. S., Bai, Z., and Tsai, W.-Y. (2000). Rank tests for independence-with a
weighted contamination alternative. Statistica Sinica, 10(2):577-594.
Tarsitano, A. (2009). Comparing the eectiveness of rank correlation statistics. Working
Papers 200906, Università della Calabria, Dipartimento di Economia e Statistica.
Thompson, G. (1993). Generalized permutation polytopes and exploratory graphical
methods for ranked data. The Annals of Statistics, pages 1401-1430.
Thurstone, L. L. (1927). A law of comparative judgment. Psychological review, 34(4):273.
Vermunt, J. K. (2003). Multilevel latent class models. Sociological methodology,
(1):213-239.
Full Text: pdf