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l. Introduction.-

It is not always easy to solve the problem of approximating a

function y(x) of which a discrete set of approximate values is

known if the degree of reliability with which they are known is

uncertain.

In particular it is often impossible to apply its result to numerical

derivation. It is moreover particularly inefficient to determine

an aporoximation of a function by an exact fitting of the available

data when the function y(x) one wishes to approximate is known at

many points of the interval.

It is then clearly preferable to consider the majority of the given

values rather than to choose an arbitrary set, composed of the smallest

number of discrete values necessary to determinea set of conditions.

In this note we present a method of computation that improves the

precision of the data

at same poi nts x., (i
l

Yi which approximate a differentiable function

= 0,1 , ... n) and which computes the values taken

at the poìnts x. (i = 0,1, ... ,n)
1

by the derivative y' (x) .

The method we propose uses both the quadra tu re formulas that connect

the values of the derivative of a function to the values of the function

itself and Cook's method [l].

The present method has been developped in order to determine the

energy level of a trapping centre in a semiconductor by studying the

trapped charge.

It has been tested on some analytical functìons, tabulated at poìnts

that differed from the true values by less than 1%.
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2. Theory of the method af numerical derivation.

Let the values taken by the differentiable function y = y(x) be

assigned in carrespondence of the values x ,xl"" ,x of x, wherea n

x. = i h
1

(i=O,l, ... ,n), (2. ì ;

In the fallowing we shall denote, for each i, by y. and
l

i1Y . ,
1

respectively the given numerical values and the deviation of every given

fram the carresponding theoretical value

We sna1l denote by

y( x . ) .
1

./ =
'$

/ 'I \
J o \

\

v ;. n '
\ ! i

Y'T" ::;;

I ''y(x )\
J a

y( xl)

'! (x \
• Y) 1

\

:'!'(x )!
\~ n I

\ '!

~y =

the (n+1)-dimensional column vector and by E the identity matrix

of order n+l .

Let A be an invertible linear aperator such that

Ace = y L. • ..:.

in the sequel we shall assume, for short, A to be an invertible

matrix af arder n+l.

;t is our aim to give a numerica1 evaluation of vectar 0, or of tne



- 6 -

values that the derivative y' = y'(x) takes at the points (2.1) with

the highest possible precision.

It follows from (2.2) and from the relation YT = Ys + uY that

Ao = YS + t, Y

or

- l - l
o=AY+A6Y

S

(2. J ì

(2. 4 ~

Even though t,Y can be regarded as negligible with respect to v
'S

and therefore à relationship of the type

'\,

Ao = YS (2.5)

may be thought to hold,

-lto A Ys; the solution

- lA èY is in generaI not negligible with respect

is thus not "acceptable".

We denote by W the diagonal matrix

euclidean norm in Rn
+
1.

-l
(E· t, Y) and by Il· Ii the

We sha 11 say that

of the problem if

is an "acceptable" solution

2
x l'·I(Y A) ,,2 '\, l

= i" 5 - °s Il = n + .
(') .. ".
........ V)

we require that the solution vector

In order to obtain, among alI the possible solutions o that satisfy

(2.6), the one that offers the "best possible solution", we define

a structure function 5(0), which is, to a certain extent, arbitrary,and

0 5 be such as to minimize the

function 5(0) and satisfy (2.6). Using the method of Lagrange's

multipliers one obtains the equation
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(2. 7)

We shall denate by S the matrix (which we shall call, far shart,

smaathing matrix) such that

8S = S080

and by A
T

the transpased matrix A. One abtains

. . T 2 '
8x" = L2A W (Ao - Ys)j 60

and hence
• . T 2 .

òx· + ,,6S = L2A W (Ao - Y
S

) +\lSoJ 6S.

in arder far (2.7) ta be verified it is necessary and sufficient that

then

( ., .
\ C. • U .

The salutian °s that we are laaking far is then abtained as cl

solutian af the system (2.8), (which is a system of n+1 equatians in the

n+2 unknawn I I l ') if ane chaases À in such a way thaty 'Yl""'y ,Ao n

x2 ~. n+ l.

The matrix A we have cansidered is the matrix af arder n+l

I \! y O O · . . . . . .. O
I l +y O O

h
I ·. . . . ...
I

A = - ,
2 l +y 2 · . . ..... O

\
\
\ 1+y 2 2.... ... l ,

I



- 8 -

y(xo) . y'(xo) f O. If, on the contrary,where
2y(x )

= o if
Y hy' (X

O
)

y(x )·y'(x ) = O one considers the matrix of order n obtained fromo o
A by deleting the first row and the first column (provided y(xl)'Y'(Xl)fO)

The structure functions considered by us are

n-l
2

51 (o) = ; k (Y k+l - y )
k

n-l 25
2

(0) = Li< (Yk+l - 2Yk + Yk- l )l

The corresponding smoothing matrices we obtained by considering

and . they are respectively,

/
l -l O!

-l 2 -l O

O -l 2 ,-,
51 = ~ - - -<

\
O O -1

. . . . ... . .. . .. . .. . O
\,

\
\

O..•.•

2 -l

-l

I ,

I 1 -2 O O \-2 5 -4 O! \
\

-4 6 -4 O...
,
\

!
52 = 2 - - - - - - - - - - - - -

O ·. ... . .... O -4 6 -4

O O O -4 5 -2 !
\

·. ... . ....

O · . . . . . . . . . O O O -2
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:; O,l, ... ,n
n

* ny. ;
1 2

After determining c ; (y' 'Yl' , ... ,y') by the method outlined
o n

above we can determine with a higher precision the numerical values

y. setting
1

3. Numerical results

We have tested the method for the evaluation of the derivati ves

y: (i; 1,40) of some analytical functions y(x) at the points
1

x. ; ih (i ; 1,40) for h; 0,05 starting from a set of approximate
l

values y. as reported in table 1,11,111.
1

The values
T

y. obtained by the present method are clearly better
1

than the given y: s.
1

The method has been used in order to determine the maximum value of

the modulus of the derivative of a function measured experimentally. fn

every case, we have adopted the smoothing matrix 52'

Figure l shows the experimental values Yi' i = 1,25 the accumulated

charge in terms of the energy of the quasi Fermi level in a semiconducting

crystal in space-charge conditions due to trapping levels, the function

(solide line) and the modulus of the derivative (dashed line), calculated

by the present method.

The maximum value of the modulus of the derivative y' is connected

to the energy position of the trapping level that governs the phenomenon.

The result we obtain agrees with that determined by other methods, ~2:'



TABLE I

7 l 2
= '38,52À = 2.10 y(x) ." x Il X

*x. y (x. ) y. y. y' (x. ) y:
I J I I l I

O. f)J 0.000041 O.OOOOIl! 0.000041 0.002500 0.002475

0.75 0.005208 0.00510,(0 0.000,209 O.ll6250o 0.061252

0.45 0.030375 0.030(rll 0.030'110 0.202500 0.20194 1,

( I • 6 r; 0.091",41 (; .n90626 0.091 'i 22 0./,22500 0. 1,22007

0.85 0.204708 0.202661 0.204682 0.722500 0.722012

l . O'i 0.385875 O.J82016 0.385147 1.102500 l .100949

1.25 0.651041 0.644531 0.65064/, 1.562500 1.561237

I .45 1.016208 1.006046 1.016215 2.102500 2.107910

l .65 1.497375 1.482401 1.499130 2.722500 2.731212

1.85 2.110541 2.089436 2.111794 '3.422500 3.399466

of them.

the derivative y~,
of i are also

the theoretical ordinates

1%, those calculated by

x., of,
by l ess than

and the values of

the rrlativl.' value

the values of the abscissae

differ from the true valuey., that,
the theoretical value, of the derivative y'(x.),
method. rhe valul.' of lhe Lilgrangp. multipl ier and

each table only a few results as the space would be insufficient to report alI
3y(x) = x /3

•y. ,
1

method

reports for the function

the experimental ordinates

oht~jned by tlle presenl

y(x.),of,
the present

(a) We have reported in

rab 1e

I ~por t.·d



TABLE II

f> x ~
= '39,',2). = IO y(x) = ~ -x-I X

~

y' (x. )
,

x. y(x.) y. y. y.
l l l l l 1

0.05 0.001271 0.001258 0.001:159 0.o'i1.271 0.050820

0.25 Il.034025 0.03368'; Il. 0)/.. 04 ') 0.28402'; O. 2R I9';:'

0.45 0.11831.2 0.1171.79 0.1 Hl290 0.568J12 0.567674

0.65 0.265540 0.26288', 0.265488 0.915540 0.914879

0.85 0.489646 0.484750 0.489543 1 .139646 ].338830

I. .05 0.807651 0.799571, 0.80752'; 1.857651 1.857131

l .25 1.240342 1.227939 1.240083 2.490342 2.487356

1.45 1.813114 ] .794983 ].812066 3.263114 3.258322

1.65 2.556979 2.53]4]0 2.5,';6752 4.206979 4.221641

1.85 3.509819 3.474721 'l. 5139 75 5.359819 5.373412

rable II reports the analogous results for the function y(x)

Symbols see table II.

= eX-x-l. For the meaning of



TABLE III
7

.,
li ;: /l.ltl y(x)"'l-,'os(x) X ,.. Id)

• ,
X. Y (X. ) y. y. y' (x. ) y.

l l L I I l

0.0, 0.001249 0.OOI!J7 0.001241 0.1)49979 O.lJl,964:!

O. 25 0.031087 0.030776 Il.trl 1078 (). 24 7 ',0'1 (),2 /.7:.I I.I.

().45 O.o99"5~' 0.098557 O.0995J3 0.431,96<; 0./,3';1J11

O. 6 'j O.?019Ih O.!.018ll o.20J869 0.605186 0.605091,

0.85 0.340016 0.3'36616 0.319946 0.751280 0.751536

1.05 0.5u2/,28 ().497404 0.502448 0.867423 0.868300

1 .25 0.684677 0.677830 0.684731 0.948984 0.948271

l. 45 0.879497 0.870702 0.878949 0.992712 0.98778',

I. (, 5 1.079120 1.068129 1.077571 0.996865 0.994580

1.85 l. 27<;590 1.262834 1.27577/; 0.96127'; 0.986571

Table III reports the analogous results for the function y(x) = l-cos(x). For the meaning of

symbols see table I.
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Figure caption

The figure l reports the experimenta1 va1ues (dots), measured with an

error estimated about 5%, of the accumu1ated charge versus the quasi

Fermi leve1. In the same figure we show a1so the va1ues of the function

o(E) calculated by the present method (solid 1ine) and those of the

modu1us of the derivative (dashed 1ine) for À = 4.10
18

to which there

corresponds the va1ue x2
= 24,39, to be compared with the number of

experimenta1 points N = 25.



C'ILU-c -c

2

3

1

,~-...,

I \
I \

I \
I \

/ \-
I \

• I \
/ \, ,, \

I ,
/ ,

/ \.. \, ,, ,, ,
I ,

I ,, ,
I \, ,, ,

I ,, ,
I \

, l
, l

I ,, ,, \
I \

/ ,, ,, ,
\,,

\
\
\
\
\

\
\

••
r--------------, ~~

I

~
7
E
u

U
<D

Io
"'"~

3

1

2

~

M
I

E
u

U,....
I

o
-r--eli

0.35 0.40 0.45 E(eV)

Fig.1


