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SUMMARY .- Faem a necessany condition for the existence o4 k(> 2} complementary
distuibutions on a mand fodd we deduce connections befween Pontrjagin classes o4

distrnibutions and of transvernsal bundlfes.

Let M be a riemannian smooth orientable manifold of dimension n (even
or odd) and suppose that M has k complementary (smooth) distributions of

oriented ni—pianes (i=1,...,k); 1. e. for every point p = M the tangent
kK

space Tp(M) can be decomposed into the direct sum of the subspaces Té,...,Tp

of T (M) where dim T =, (and hence n. +...+n_ = n).
p D 1 1 K

Then one says that M admits an "almost product" or "almost multiproduct”

structure,

In a paper of 1969 ([3}) one of the present authors showed that the vani-
shing of certain Pontrjagin classes is a necessary condition for the existence
of k complementary distributions on M, After a review of these results we

prove the following

THEQOREM A

Let M be a ndiemannian smooth ondentable manifold of dimension n.
Furnthewmore Let M have R complementany disinibuticns Eé c ™™ and Let The

bundle Qi = T!‘.-{/'E/é nave fibre of dimension 1 with

. = n - n. and M,+...*d, = N
"L £ 1 f

. 4 L
Finally Let pziE} e H H(MﬂR} dencte the nr-th neal Pontrjagin class of the

bundle E. Then Lf

PIOIPLE,) =0 Vi,s > 1 and h+s = n

(¥} This work vas carried out in the framework of the activities of the
GNSAGA (CNR - Italy).
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a.] =0 n > . .
P {ﬁ.} 0 7n max(nr, 0N

A
Using Bott's "Vanishing Theorem" one can, in a certain sense invert the
preceding result obtaining
THEOREM B

Let M be a niemannian smooth ordientable mandifofd of dimension n.
Furtherumene Let M have k£ complementany disinibutions EL c M and let

the bundle Q{ = TM/E. have 4ibre of dimension 4 WAt

R and n.F...+n, = N,
qL £ 1 R

I4 0. «s dntegrable, then forn 2n = max{n},...,ﬂ
»p (E) = 0 ¥h,s > 1 and h + 5 = 1

hotds.,

In order to give a self-contained presentation we recall the necessary

preliminaries.

1. Preliminaries

Let M be a smooth (paracompact) manifold and let E be a vector ZRq~buQ
dle on M. As is well known, the total (real) Pontrjagin class p(E) of E

is defined by

2(E) = 14p(E)+...sp (E) = |det (I-
1.

0

T

1

[

) dr
where o 1is the curvature of an arbitrary connection on E and pr(E)eH (MJR)
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where H*(M;im) is the de Rham cohomology ring of M. Pr(E) is called

the r-the Pontrjagin class of E,

Clearly Pr(E) =0 for 4r >n if n = dim M. Moreover if E s an orien

ted bundle of even dimension q, then the class pq (E), which is locally
/2

represented by the closed form (Zw)-q det 9, equals the square of the
Euler class; this latter is strictly connected with the Euler-Poincaré cha

racteristic of the manifold under consideration, if E = TM.

If & 1is the tangent bundle TM, then the classes are also calied Pon-

trjagin class of M and are often denoted by Pr(M)'

Let @ 1is the curvature form of a connection on the principal fibre

bundle of orthonormal frames, then the explicit expression of Pontrjagin

()

classes is give by

112 2r 2r) 1
el [lED2E ey e
(2F r1)2(2m)2r (0 ptoctap tpttotogd

(s) ] . . . .
(1.2) 0. . = ' T o6(i,veyi 33.,...300. . A..AQ, .
ie.ed s! (i) 1 s 71 s 3112 Js=-1 Js

s is an even integer and 5(11,...,15; j}""’js) is the generalysed

Kronecker symbol.

For n even, the n-form

-1
(1.3) o™ {2” 2 <—é}qf} Te. AR . ...aQ

i...1 1.1 1 i
= 1 n 12 n~-1 n

called Gauss curvature form of M, is a representative of the Euler class of

1See J.A. Thorpe 6]
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™ and if M 1is compact and orientable, the Gauss-Bonnet theorem says that

n
where X(M) is the Euler-Poincaré characteristic of M and f:M - Gn(M)

W

is an orientation of M, Gn(M) being the Grassmann bundle of the oriented

n-planes tangent to M.

2, A vanishing theorem

We can now prove the following theorem ([3])

(2.1). Theorem

Let M be a niemannian smooth onientable manifold of dimension n which
admits k complementary (smooth) distributions of orniented n{.;pﬂane/é

(4= 1,..,,k). Then the neal Pontrjagin classes P&(M) are null fon 2n>max(n?,..,n |

k

Proof.

e

Let E be the principal fibre bundle of the orthonormal frames (associated
4"

to the tangent). Its structural group is G = SO(n) (the rotation group). We
Fa s
recall that the Lie algebra %}9 of SO(n) can be identified with space of

the skew-symmetric matrices of order n.

N
Let us consider the subbundle E of E formed of the frames "adapted"

to the distributions, viz, the orthogonal frames {ei}(1=1,...,n) so that the

vectors

{e } O, = n_+...+n, Fl,...,n +.,4n0, n, = 0
o, J 1 J-1 1 J ( )

form a basis for T°. The bundle E can be regarded as having structural group



G = SO(n,) x SO(nz)x...xSO(n

1 k)'

A connection w on E is represented by a 1-form which takes values in
the Lie algebra 557 of G, where 5¢' is the direct product of the Lie alge

bras of SO(nr). Hence one obtains

w =0 i#] i,j=1,...,k; a.,6,=n_+...n, _*+1,...,n_+...+n
i 1 =1
Analogous reiations hold for the components of the curvature form Q.Therefore,

if 2r > max(nl,...,nk},then each term in (1.2) will have a factor Q
a. B,
1]

with i#j; the assertion pr(TM) = Pr(M) = 0 then follows from (1.1);J

Remarks
(2,2) 1f k =n and therefore ni =1 ¥i (i.e. the manifold is paral-

leTizable) then Pr(M) =0 ¥r. It follows that the adapted connection

vanishes. The manifold is then flat.

(2.3) For k = 2 (and obviously for k = 1) the theorem is not meaningful.

As for n +n,=n, max(nl,nz)‘iin/Z] and consequently P (M) = 0

2

¥ 2r > max( nl,nz).
(2.4) It is worth noticing that the existence of a distribution of

g-planes implies the existence of a distribution of (n-q)-planes. An arqument

analogous to the one followed above, using the Gauss curvature form, yields

the following



(2.5) Theorem

Let M be a smooth compact ondentable manifold of dimension even n
and suppose that it has a distribution of ondented g-planes with ¢ odd

(1 < q < n). Then the Euler-Poincand characteristic of M 45 null.

3. Proof of theorems A and B.

(3.1) To every distribution there corresponds a smooth subbundle Ei
of the tangent bundle with the fibre of dimension n.. Denote the quotient
bundle by Qi = TM/Ei. From the Whitney duality formula p(TM)zp(Qi)p(Ei)
it follows that

(3.2) P(TM) = P (Q)+P ()P (EL)+...4p (Q,)P

r-1"7170 10 (Ei)+pr(E')

r-1 1

where the product between classes is the "cup product" in the ring H*(M; R).
If 2r > n.s then r > n1/2 and hence Pr(Ei) = 0. If moreover
(3.3) P (Q)P(E,) = 0 Vh,s > 1, hts = r

then
Pr(TM) = pr(Qi) 2r > n..

Notice that, since the Pontrjagin ring may have divisors of zero, condi-
tion (3.3) does not imply that either Ph(Qi} =0 or ps(Ei) = 0. On account

of our assumptions, from theorem (1.1) one can conclude that

P (0.) =0 2r > max(nl,...,nk).

This proves theorem A.

(3.4) It is well known that if Ei € TM s isomorphic to an integrable
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subbundle, then by Bott's theorem

where 9; = n-ni. Hence in the assumptions of theorem A, if m = max(nl,...,n

then one has for the integers h for which m < h < 4q1

PP(Qi) =0 2r > h

whithout assuming that Qi be integrable. This is meaningful if k > 2.
(3.5) Conversely let us assume Qi to be integrable. Then, under our as-

sumptions, one has at the same time
Pr(TM) =0 P(Q.) =o0 2r > max(m,4qﬁ)

hence an account of (3.2)
Ph(Qi) Ps(Ei} =0 ¥h,s > 1, hts = r,
This ends the proof of theorem B.
Remafk

The results of theorem (2.1) hold in the more general situation of an

almost multifoliated riemannian structures on a manifold, i.e.

where Ei are not necessarely complementary. Infact by increasing the number
of distributions, with a suitable choice of the metric ([7]) it is possible go

back to the previous situation.

K/

<4qi,
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