strictsolution. Mollifyng, in our case, means replacing F with
(3) $\quad F_{\varepsilon}(f)(x, v, w)=q\left[K_{\varepsilon}\left(J_{1} f\right) \cdot\left(J_{2} f\right)-f K_{\varepsilon} J_{3} J_{1} f\right]$
where
(4) $\left(K_{\varepsilon} f\right)(x, v, w)=\int_{x}^{+\infty} k_{\varepsilon}\left(x^{\prime}-x\right) f\left(x^{\prime}, v, w\right) d x^{\prime}$
and
(5) $k_{\varepsilon} \epsilon L^{\infty}(0,+\infty) ; k_{\varepsilon}(y) \geq 0 ; k_{\varepsilon}(y)=0$ if $y \notin(0, \varepsilon) ; \int_{0}^{\infty} k_{\varepsilon}(y) d y=1$.

The aim of this work is to study the original problem, i.e.(1), in L^{1} and to find the connexion between the solution $u(t)$ of (1) and the solution $u_{\varepsilon}(t)$ of the mollified problem.

Precisely we prove that if $u_{\circ} \in L^{1} \cap L^{\infty}$ then (1) has a unique local "mild" solution, i.e. the integral version of (1) has a unique local solution. If $[0, \bar{t}]$ is the existence time interval of such solution $u(t)$, we have

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\|u_{\varepsilon}(t)-u(t)\right\|=0
$$

uniformly respect to t in $[0, \bar{t}] .\|\cdot\|$ is the usual norm in L^{1}.
We shall use the well-known results of linear semigroup theory for which we refer to [4] Chapter 9. For the results on the non linear evolution equations (in particular for semi-linear ones) we refer to [3], [6] and [8].

2. THE ABSTRACT PROBLEM.

Denote $X=\left\{f=f(x, v, w) ; f e L^{1}\left(R^{2} x \bar{V}\right)\right\}$ and $X_{0}=\{f ; f e X, f(x, v, x)=0$ a.e. if $v \notin V\} \quad X_{0}$ is a closed subspace of X and we use it to get the third relation in (1).

Define

$$
\left\{\begin{array}{l}
A_{1} f=v f_{x}-\frac{w-v}{T} f_{v}+\frac{1}{T} f \tag{6}\\
D\left(A_{1}\right)=\left\{f \in X_{0} ; \exists f_{x}, f_{v}, v f_{x}+\frac{w-v}{T} f_{v} \in X_{0}\right\}
\end{array}\right.
$$

where $f_{x}=\frac{\partial f}{\partial x}, f_{v}=\frac{\partial f}{\partial v}$ are distributional derivatives.

If we consider the linear homogeneous problem connected with (1) and use the method of characteristics, we hav ϵ
(7) $u(x, v, w ; t)=\exp \frac{t}{T} u_{0}(\bar{x}(t), \bar{v}(t), w)$
where

$$
\begin{aligned}
& \bar{x}(t)=\bar{x}(x, v, w ; t)=x-w t+(w-v) T\left(\exp \frac{t}{T}-1\right) \\
& \bar{v}(t)=\bar{v}(x, w ; t)=w-(w-v) \exp \frac{t}{T} .
\end{aligned}
$$

If we denote
(8) $[Z(t) f](x, v, w)=\exp \frac{t}{T} f(\bar{x}(t), \bar{v}(t), w)$ $t \in R$ then we have as in [1].

Lemma (1) . (a) $\{Z(t) ; \operatorname{teR}\} \subset \mathbb{C}(X) ;(b):|Z(t) f||=||f| i$
for $f \in X ;(c)\{Z(t) ; t \in R\}$ is a group.

If $Z_{0}(t)$ is the restriction of $Z(t)$ to the subspace $X_{0}, Z_{0}(t)$ maps X_{0} into itself for $t \geq 0$ and we have

Lemma (2). (a) $\left\{Z_{0}(t) ; t \geq 0\right\} \in \mathbb{B}\left(X_{0}\right)$ and is a semigroup
(b) $\left|\left|Z_{0}(t) f\right|=\left||f|\right.\right.$, for $f \in X_{0}$; (c) $Z_{0}(t)$ is strougly continuous in t for $t>0$

If we denote by A_{0} the infinitesimal generator of $Z_{0}(t)$ ([4]) Chapeter 9) it is easy to prove that A_{1} is the restriction of A_{0} to the set $D\left(A_{1}\right) \subset D\left(A_{\rho}\right)$ and that $Z_{0}(t)\left[D\left(A_{1}\right)\right] \subset D\left(A_{1}\right)$ (see [1]).

The natural domain of F is

$$
D(F)=\left\{f: f \in X_{0}, F(f) \in X_{0}\right.
$$

and because this is not the whole X_{0} it is useful to introduce the following sets

$$
x_{\infty}=L^{\infty}\left(R^{2} \times \bar{V}\right) \quad \text { and }
$$

$$
s(r)=\left\{f: f \in X_{0} \cap X_{\infty} ;\|f\|_{\infty} \leq r\right\}
$$

where r is a positive constant and

$$
\|f\|_{\infty}=\operatorname{ess} \sup \left\{|f(x, v, x)|:(x, v, w) \in R^{2} x \bar{V}\right\}
$$

We have
Lemma (3). (a) $X_{0} \cap X_{\infty} \in D(F) ;(b)\|F(f)\| \leq q d\|f\|\|f\|_{\infty}$ if $f \in X_{0} \cap X_{\infty}$, where $d=\left(v_{2}-v_{1}\right)^{3}$; (c) $s(r)$ is closed in X_{0}. PROOF.
(a), (b): If $f \in X_{0}{ }^{\wedge} X_{\infty}$ and $v \notin V$ then $F(f)(x, v, w)=0$ a.e.
(c) If we suppose that $f_{n} \in s(r)$, $\mid: f_{n}-f \rightarrow 0$ as $n \rightarrow \infty$, but $f \notin s(r)$, then we obtain a contradiction

Remark (1). It is useful to introduce $s(r)$ because $X_{0} \cap X_{\infty}$ is not closed in X_{0}.

With the preceding notation, the problem (1) assumes the abstract form

$$
\begin{equation*}
\frac{d u}{d t}=A_{0} u(t)+F(u(t)) \quad t>0 ; \lim _{t \rightarrow 0+} u(t)=u_{0} \in D\left(A_{0}\right) \tag{9}
\end{equation*}
$$

where $u:[0,+\infty) \rightarrow X_{0}$ and $\frac{d}{d t}$ is a strong derivative. The integral version of the problem (9) is

$$
\begin{equation*}
u(t)=u_{1}(t)+\int_{0}^{t} Z_{0}(t-s) F(u(s)) d s \quad t>0 \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}(t)=z_{0}(t) u_{0} \tag{11}
\end{equation*}
$$

and from (b) of Lemma (2) $\left|\left|u_{1}(t)\right|=\left|\left|u_{0}\right|\right.\right.$
Every solution of (9) is also a solution of (10), but the converse is not generally true. For this reason every solution of (10) is said to be a "mild" solution of (9) (see [3]).

