U-proper set representation $((f(S), \underline{C}), f)$ of $(S, \underline{C})^{(\mathcal{L})}f(c)$ is a point closure.

N. 2. A BRIEF REVIEW OF PREORDERED SETS.

Let S be a set and \leq_{n} a preorder relation for S(i.e. \leq_{n} exhibits the transitive and reflexive properties). All the most important notions about a poset can be extended to a preordered set (e.g. upper bound, lawer bound, maximum, minimum, ℓ .u.b.,g. ℓ .b., etc.); thus a right tail of a preordered set (S, \leq_{n}) will be every Y <u>c</u> S such that \forall x,yeS:xeY and x \leq_{n} y =>y \in Y.

We observe that if $Y_1 \subseteq S$ then the set $r(Y_1) = \{x \in S : x \text{ is an } upper bound of Y_1\}$ is a rigth tail of (S, \leq) ; in particular the principal filter $r(y) = r(\{y\})$ generated by $y \in S$ is a right tail of (S, \leq) . Moreover

(ii) $r(X) = \bigcap_{x \in X} r(x)$ and if X is a right tail then $X = \bigcup_{x \in X} r(x)$. Now let \mathcal{C} be a subset of $\mathcal{P}(S)$ (the power set of S), x an element of S and $\mathcal{C}_{x} = \{X \in \mathcal{C} : x \in X\}$. Then we define, for every x,yeS

(j)
$$x < y(t)$$
 iff $t = c t$.

Clearly the defined relation is a preorder relation. Moreover if \mathscr{C}' is the set of set complements of the elements of \mathscr{C} it follows, since $\mathscr{C}'_{x} \subseteq \mathscr{C}'_{y}$ iff $\mathscr{C}'_{y} \subseteq \mathscr{C}'_{x}$,

(jj)
$$x \leq y(\vartheta)$$
 iff $y \leq x(\vartheta')$.

(2) We shall prove that there exists at least a U-proper set representation

of (S, <).

One can easily verify that every element of \mathcal{C} is a right tail of S preordered with respect to relation defined in (j). On the other hand if (S, <) is a preordered set and \mathbb{R} is the set of the right tails of (S, <) then for every x,y e S the following properties hold

(e)
$$x \leq y$$
 iff $x \leq y(R)$ according to (j) and $x \leq y$ iff $x \leq y(R_0)$,

where \Re_0 is the set of the principal filters of (S, \leq) generated by an elment of S. And hence, as a consequence of (jj), the following property holds:

(ee)
$$x \leq y$$
 iff $y \leq x(\mathbb{R}_0^{\prime})$,

where \mathbb{R}' is the set of all set complements in S of the elements of \mathbb{R} .

Now we can give the following

THEOREM 1. Let $\mathscr{C} \leq \mathscr{P}(S)$ be, $Y \in \mathscr{C}$ and $y \in Y$. Then Y is a point closure in \mathscr{C} with respect to y iff y is minimum in Y with respect to relation defined in (j).

PROOF. In fact: y is minimum in $Y \iff \forall x eY : e_y e_x \iff \forall x eY$, $\forall ZeC_y : ZeE_x \iff \forall x eY, \forall ZeE_y : x eZ \iff \forall ZeE_y : Y eZ$. Q.E.D.

N. 3. A CHARACTERIZATION OF V-PRIME AND STRONGLY V-PRIME ELEMENTS OF A POSET.

Henceforth let (S, <) be a poset. Then we can consider the function

 $g: S \rightarrow P(S)$ mapping an element $x \in S$ into the set $g(x) = \{y \in S: x \neq y\} = S - r(x)$. Clearly f is an injective function; moreover $\forall x, y \in S \times y$ iff $g(x) \leq C$