$U$-proper set representation $\left((f(S), Q, f)\right.$ of $(S, G)^{(L)} f(C)$ is a point closure.
N. 2. A bRIEF REVIEW OF PREORDERED SETS.

Let $S$ be a set and \& a preorder relation for S(i.e. ¿ exhibits the transitive and reflexive properties). All the most important notions about a poset can be extended to a preordered set (e.g. upper bound,lawer bound, maximum, minimum, l.u.b.,g.l.b., etc.); thus a right tail of a preordered set $(S,<)$ will be every $Y \subseteq S$ such that $\forall x, y \in S: x \in Y$ and $x<y \Longrightarrow y \in Y$.

We observe that if $Y_{1} \subseteq S$ then the set $r\left(Y_{1}\right)=\{x$ e $S: x$ is an upper bound of $\left.Y_{1}\right\}$ is a rigth tail of $(S,</)$; in particular the principal filter $r(y)=r(\{y\})$ generated by $y \in S$ is a right tail of ( $\mathrm{S}, \stackrel{\sim}{\sim}$ ). Moreover
(ii) $r(X)=\hat{X}_{x \in X} r(x)$ and if $x$ is a right tail then $x=\bigcup_{X \in X} r(x)$.

Now let $\mathcal{C}$ be a subset of $\mathbb{P}(S)$ (the power set of $S$ ), $x$ an element of $S$ and $Y_{x}=\{X \in \mathcal{E}: x \in X\}$. Then we define, for every $x, y \in S$
(j)

$$
x<y(\varepsilon) \text { iff } e_{x} \subseteq Q_{y} .
$$

Clearly the defined relation is a preorder relation. Moreover if $\varphi^{\prime}$ is the set of set complements of the elements of $Q$ it follows, since $\varepsilon_{x} \subseteq \complement_{y}$ iff $\varphi_{y}^{\prime} \subseteq \underbrace{\prime}_{x}$,

$$
\begin{equation*}
x<\underset{\sim}{x}(\varphi) \text { iff } y<x\left(\varphi^{\prime}\right) \tag{jj}
\end{equation*}
$$

( ${ }^{2}$ ) We shall prove that there exists at least a U-proper set representation of ( $S, \underline{\leq}$ ).

One can easily verify that every element of $C$ is a right tail of $S$ preordered with respect to relation defined in ( $j$ ). On the other hand if $(S,<)$ is a preordered set and $R$ is the set of the right tails of $(S,<)$ then for every $x, y \in S$ the following properties hold
(e) $\quad x<y$ iff $x<y(R)$ according to $(j)$, and $x<y$ iff $x<\mathcal{V}_{\sim}\left(\mathbb{R}_{0}\right)$, where $\mathbb{R}_{0}$ is the set of the principal filters of $(S, \leq)$ generated by an elment of $S$. And hence, as a consequence of ( $j j$ ), the following property holds:
(ee) $x \leq y$ iff $y \leq x\left(R_{0}^{1}\right)$,
where $\mathbb{R}_{0}^{\prime}$ is the set of all set complements in $S$ of the elements of $R_{0}$.

Now we can give the following

THEOREM 1. Let $\mathcal{C} \leq \boldsymbol{P}(S)$ be, $Y \in \mathcal{Y}$ and $y \in Y$. Then $Y$ is a point closure in $\mathcal{Y}$ with respect to $y$ iff $y$ is minimum in $Y$ with respect to relation defined in (j).

PROOF. In fact: $y$ is minimum in $y \nLeftarrow \forall x \in Y: \varphi_{y} \varepsilon_{x}^{\varphi_{x}} \Leftrightarrow \forall x \in Y$, $\forall Z \in C_{y}: Z \epsilon_{x}^{\ell} \Longleftrightarrow \forall x \in Y, \forall Z \varepsilon_{y}^{e}: x \in Z \Longleftrightarrow \forall Z e_{y}: Y \in Z$.
Q.E.D.
N. 3. A CHARACTERIZATION OF V-PRIME AND STRONGLY $V$-PRIME ELEMENTS OF A POSET.

Henceforth let ( $S, \leq$ ) be a poset. Then we can consider the function $g: S \rightarrow \mathscr{P}(S)$ mapping an element $x \in S$ into the set $g(x)=\{y \in S: x \neq y\}=S-r(x)$, Clearly $f$ is ijective function; moreover $\forall x, y \in S$ $x<y$ iff $g(x) \leq$

