- 4 -

b is a fixed element of S, then $S(+,\cdot)$ is a (2,p)-semifield and $b^{-1} + b^{-1} = b^{-1}$

And now we want to prove that if $S(+,\cdot)$ is a (2,p)-semifield and |S| > 1 then $S(\cdot)$ is a direct product of groups of order 3. This is an immediate consequence of the following two theorems

THEOREM 5. S(+) is a group and a is its zero-element.

PROOF. In fact for all bes one has $b+b=b^{k+1}\cdot(1+1)=b^{k+1}\cdot a^{-1}$; then, since $a^{-1}=a^2=a^p$, $4b=(b+b)+(b+b) = b^{k+1} \cdot a^p + b^{k+1} a^p = (b^{k+1}+b^{k+1}) \cdot a = b^{k+1} \cdot a^p + b^{k+1} a^{k+1} + b^{k+1}$ $=(b^{k+1})^{k+1} \cdot a^{-1} \cdot a = b^{[(k+1)^2]}$. Now then, since the coset k+1+(n) is invertible in $\frac{z}{(n)}(\cdot)$, the element $m = (k+1)^2$ is such that the coset m+(n) is invertible too. As a consequence an element heN exists such that $m^{h} \equiv 1$ (mod n), then $4^{h}b = b^{(m^{h})} = b$. The conclusion now follows in the same way as in the proof of theorem 2.

Q.E.D.

THEOREM 6. The subset M coincides with S.

PROOF. In fact for all xeS one has:

$$1+x=a^{2} \cdot a+a^{2} \cdot a \cdot x=a(a+a \cdot x) = a \cdot a \cdot x = a^{2} \cdot x,$$

$$1+x=a \cdot a^{2}+x \cdot a \cdot a^{2}=a \cdot a^{p}+x \cdot a \cdot a^{p}=(a+x \cdot a) \cdot a=x \cdot a \cdot a=x \cdot a^{2}$$

Then a^{f} is a central element in $S(\cdot)$ and hence $a = (a^2)^{f}$ is central too.

Q.E.D.

Su di una struttura introdotta da I.Szép to be published.