b is a fixed element of S, then $S(+, \cdot)$ is a $(2, p)$ semifield and $b^{-1}+b^{-1}=b^{-1}$.

And now we want to prove that if $S(+, \cdot)$ is a $(2, p)$-semifield and $|S|>1$ then $S(\cdot)$ is a direct product of groups of order 3. This is an immediate consequence of the following two theorems

THEOREM 5. $S(+)$ is a group and a is its zero-element.
PROOF. In fact for all beS one has $b+b=b^{k+1} \cdot(1+1)=b^{k+1} \cdot a^{-1}$; then, since $a^{-1}=a^{2}=a^{p}, 4 b=(b+b)+(b+b)=b^{k+1} \cdot a^{p}+b^{k+1} a^{p}=\left(b^{k+1}+b^{k+1}\right) \cdot a=$ $=\left(b^{k+1}\right)^{k+1} \cdot a^{-1} \cdot a=b^{\left[(k+1)^{2}\right]}$. Now then, since the coset $k+1+(n)$ is invertible in $\frac{z}{(n)}(\cdot)$, the element $m=(k+1)^{2}$ is such that the coset $m+(n)$ is invertible too. As a consequence an element heN exists such that $\mathrm{m}^{\mathrm{h}} \equiv$ 1 $(\bmod n)$, then $4^{h} b=b^{\left(m^{h}\right)}=b$. The conclusion now follows in the same way as in the proof of theorem 2.
Q.E.D.

THEOREM 6. The subset M coincides with S.

PROOF. In fact for all $x \in S$ one has:

$$
\begin{aligned}
& 1+x=a^{2} \cdot a+a^{2} \cdot a \cdot x=a(a+a \cdot x)=a \cdot a \cdot x=a^{2} \cdot x, \\
& 1+x=a \cdot a^{2}+x \cdot a \cdot a^{2}=a \cdot a^{p}+x \cdot a \cdot a^{p}=(a+x \cdot a) \cdot a=x \cdot a \cdot a=x \cdot a^{2}
\end{aligned}
$$

Then a^{2} is a central element in $S(\cdot)$ and hence $a=\left(a^{2}\right)^{2}$ is central too.
Q.E.D.
REFERENCE
[1] A. LENZI
Su di una struttura introdotta da I. Szep to be pablished.

