$$p \circ c_{\alpha} = p \circ c = p \circ c_{\beta}$$
 and $T p(\alpha) = T p \circ d c = T p(\beta)$.

Since $d_{\gamma}(0)$ depends only on α and β , we can put

$$\alpha + \beta \equiv d c(0)$$

11 PROPOSITION.

Let $n' \equiv (E',p',M)$ and $n'' \equiv (E'',p'',M)$ be vector bundles.

There is a unique map

t: TE'
$$\boxtimes$$
 TE" \longrightarrow T(E' \boxtimes M E")

such that the following diagram is commutative

for each $c': \mathbb{R} \to E'$ and $c'': \mathbb{R} \to E''$ such that

$$p' \circ c' = p'' \circ c''$$
.

This map is a surjective linear homomorphism over TM .

2. - THE COTANGENT SPACE OF A BUNDLE.

Let $n \equiv (E,p,M)$ be a C^{∞} bundle.

1 DEFINITION.

The COTANGENT BUNDLE OF E is the vector bundle

$$τ^*E \equiv (T^*E, ρ_E, E)$$
 .

2 DEFINITION.

The HORIZONTAL BUNDLE OF T^*E is the pull-back vector bundle

$$h \tau^* E \equiv (hT^*E, \Pi^1, E),$$

 $h T^* E \equiv E \times_M T^* M$

where

Hence the following diagram is commutative

3. PROPOSITION.

The transpose map of $h: T \to h T E$ over E is an injective map

$$h T^*E \rightarrow T^*E$$
.

The following diagram is commutative

PROOF.

In fact $h T^*E$ is the dual of h T E and h is surjective $\underline{}$.

4 PROPOSITION.

The inclusion $h T^*E \rightarrow T^*E$ identifies $h T^*E$ with the orthogonal of $\int TE$. PROOF.

In fact vTE is the kernel of h .

5 DEFINITION.

The VERTICAL BUNDLE OF T^*E is the quotient vector bundle

$$v^{*}E = (vT^{*}E, \hat{\rho}_{E}, E)$$

$$v^{*}E = T^{*}E/hT^{*}E$$

where

The following sequence is exact and the diagram commutative

6 DEFINITION.

The COTANGENT BUNDLE OF E, ON vT*E, is

$$τ_{v}^{*}E = (T^{*}E, v, vT^{*}E).$$

The HORIZONTAL BUNDLE OF T^*E , ON vT^*E , is the pull-back vector bundle

$$\bar{\tau}^*_{\nu} E = (\bar{h}T^*E, \bar{\nu}, \nu T^*E)$$

where

$$\bar{h}T^*E \equiv vT^*Ex_Eh T^*E$$
 and $\bar{v} \equiv \Pi'$.

Hence the following diagram is commutative

$$\bar{h}$$
 T* E $\frac{\Pi^2}{\rho_E}$ h T*E

T*E ρ_E

7 PROPOSITION.

The bundle

$$\tau^*_{\nu}E = (T^*E, \nu, \nu T^*E)$$

is an affine bundle, whose vector bundle is

$$\tau_{\vee}^{*} E \equiv (\bar{h}T^{*}E, \bar{\vee}, \vee T^{*}E)$$
.

PROOF.

Let

$$[\beta] \in T_e^*E$$

We get

$$v^{-1}\left[\varepsilon\right] = \left\{\alpha \in \mathsf{T}_{e}^{*}\mathsf{E} \mid v(\alpha) = \left[\beta\right]\right\}.$$

Since $v_e: T_e^*E \rightarrow vT_e^*E$ is a linear map, then $v^{-1}[\beta]$ is an affine space,

whose vector space is $\ker v_{\rho} = h T_{\rho}^* E$.

Hence T^*E is an affine bundle on vT^*E and a vector bundle on E.

8 PROPOSITION.

Let $n \equiv (E,p,M)$ be an affine bundle, whose vector bundle is $\bar{n} \equiv (\bar{E},\bar{p},M)$. Let $v^* : T^*E \rightarrow Ex_M \bar{E}^*$

be the transpose map of the inclusion

$$Ex_{M}\bar{E} \stackrel{\cong}{=} vTE \longrightarrow TE^{-}$$
.

The following sequence is exact

$$0 \rightarrow hT^*E \hookrightarrow T^*E \rightarrow Ex_M\bar{E}^* \rightarrow 0$$

Then there is a unique homomorphism over E

$$vT^*E \rightarrow Ex_M \bar{E}^*$$

such that the following diagram is commutative

Such a map is an isomorphism

We will often make the identification

Then we get the commutative diagram

and the homomorphism

is an isomorphism on fibers.

3 - THE SECOND TANGENT AND COTANGENT SPACES OF A MANIFOLD.

1 As a particular case of the previous results, let us consider

$$n \equiv (TM, \Pi_M, M)$$
 or $n \equiv (T^*M, \rho_M, M)$.