In the present paper we shall develop this point of view a little further. Therefore we investigate mappings which are not necessarily continuous but satisfy the following weaker condition.
(A) the function $D(x)=d(x, f x)$ has the following property: if x_{n}, x_{0} then a subsequence $\left(x_{n_{p}}\right)$ exists such that $D\left(x_{0}\right) \leq D\left(x_{n_{p}}\right)$.

As a special case of our result we obtain a fixed point theorem of L.Ciric (Theorem 1, [2]) and a fixed point theorem of the first author (Corollary, 3_{j})
2. Let $0(f, x)$ denote the orbit of x under f, i.e. $O(f, x)=\bigcup_{0<n}\left\{f^{n} x j\right.$. We begin this section with the following definition.

DEFINITION 1 - We shall say that x has bounded orbit under f if $\operatorname{diam}(0(f, x))<+\infty$

LEMMA 1 - Let ψ be a contractive gauge function, $t_{0}>0$. Then the sequence $\psi^{n}\left(t_{0}\right) \rightarrow 0$ as $n \rightarrow \infty \quad$ (where ψ^{n} is the $n-$ th iterate of v.

THEOREM 2 - Suppose that:
(1) for some x_{0} in $M, \operatorname{diam}\left(O\left(f, x_{0}\right)\right)<+\infty$,
(2) for each x in M there exists a positive integer $n(x)$ and for each $n \geq n(x)$ and for each y in M, three subsets $J_{1}(x, y, n), J_{2}(x, y, n), J_{3}(x, y, n)$ of $Z_{+} x Z_{+}$such that for each $n \geq n(x), y$ in M
$d\left(f^{n} x, f^{n} y\right) \leq \psi\left(\max \left(\sup _{(i, j) \in J_{1}} d\left(f^{i} x, f^{j} y\right), \sup _{(r, s) \epsilon_{J_{2}}} d\left(f^{r} x, f^{s} x\right), \sup _{(l, t) \epsilon_{3}} d\left(f^{i} y, f^{t} y\right)\right)\right)$
Then f nas a unique fixed point u in M and $\left(f^{n} x\right)$ converges to u in M as $n \rightarrow \infty$ for each x in M which has bounded orbit under f.

Proof. - For the x_{0} in (1), let $m_{0}=n\left(x_{0}\right)$ and inductively $x_{n}=f^{m-1} x_{n-1}$, $m_{n}=n\left(x_{n}\right)$. We show that $\left(x_{n}\right)$ is a Cauchy sequence. It suffices to show that for a given $\varepsilon>0, \quad d\left(x_{n+1}, x_{n+k+1}\right)<\varepsilon$ for all k positive integer, when n is large enough. For this purpose, let n be fixed and denote $d_{i}=\operatorname{diam}\left(0\left(f, x_{n-i}\right)\right), m(k)=m_{n+1}+m_{n+2}+\ldots+m_{n+k}$. Then $d\left(x_{n+1}, x_{n+k+1}\right)=d\left(f^{m} x_{n}, f^{m}\left(f^{m(k)} x_{n}\right)\right) \leq \psi\left(\max \left(\sup _{(i, j) \in J} d\left(f^{i} x_{n}, f^{j}\left(f^{m(k)} x_{n}\right)\right)\right.\right.$, $\left.\left.\sup _{(r, s) \in J_{2}} d\left(f^{r} x_{n}, f^{s} x_{n}\right), \sup _{(\ell, t) \in J_{3}} d\left(f^{\ell}\left(f^{m(k)} x_{n}\right), f^{t}\left(f^{m(k)} x_{n}\right)\right)\right)\right)$

$$
\leq \psi\left(d_{0}\right),
$$

where $J_{1}\left(x_{n}, f^{m(k)} x_{n}, m_{n}\right), J_{2}\left(x_{n}, f^{m(k)} x_{n}, m_{n}\right), J_{3}\left(x_{n}, f^{m(k)} x_{n}, m_{n}\right)$ are as in (2), since ψ is nondecreasing and all terms under the max and sup operations are bounded by d_{0}. Let u and v two points of $0\left(f, x_{n}\right) ; u$ and v may be put in the form $u=f^{p} x_{n}, v=f^{p+q} x_{n}, q \geq 0$. Hence

$$
\begin{align*}
d(u, v)= & d\left(f^{p} x_{n}, f^{p+q} x_{n}\right)=d\left(f^{m} n^{+p} x_{n-1}, f^{m} n-1{ }^{t p}\left(f^{q} x_{n-1}\right)\right) \leq \psi\left(\operatorname { m a x } \left(\sup _{(i, j) \in}\right.\right. \tag{i,j}\\
& d\left(f^{i} x_{n-1}, f^{j}\left(f^{q} x_{n-1}\right)\right), \sup _{(r, s) \in J_{2}} d\left(f^{r} x_{n-1}, f^{s} x_{n-1}\right), \sup _{(\ell, t) e J_{3}} \\
& \left.\left.d\left(f^{\ell}\left(f^{q} x_{n-1}\right), f^{t}\left(f^{q} x_{n-1}\right)\right)\right)\right) \leq \psi\left(d_{1}\right) .
\end{align*}
$$

It follows that $d_{0} \leq \psi\left(d_{1}\right)$. By routine calculation one can easily show that the following inequality holds

$$
d\left(x_{n+1}, x_{n+k+1}\right) \leq \psi^{n+1}\left(\operatorname{diam}\left(0\left(f, x_{0}\right)\right)\right) .
$$

It follows that $\left(x_{n}\right)$ is a Cauchy sequence as it derives from the LEMMA? Say u in M such that $u=\underset{n}{\lim } x_{n}$. Now, by an argument similar to that used above, one can easily show that

$$
d\left(x_{n}, f\left(x_{n}\right)\right) \leq \psi^{n}\left(\operatorname{diam}\left(0\left(f, x_{0}\right)\right)\right)
$$

so that $\lim _{n} D\left(x_{n}\right)=\lim _{n} d\left(x_{n}, f x_{n}\right)=0$. From (A), for a subsequence $\left(x_{n_{p}}\right)$, we obtain $0 \leq D(u) \leq D\left(x_{n_{p}}\right)$ and hence $D(u)=0$, i.e., u is a fixed point of f. The uniqueness of the fixed point may be established by use of (2). It now remains to be shown the last assertion of the theorem. For this end, let x in M be such that has bounded orbit under f. As above, let $x_{0}=x, m_{0}=n\left(x_{0}\right)$ and inductively $x_{n}=f^{m-1} x_{n-1}, m_{n}=n\left(x_{n}\right)$. Since, already, we have showed that

$$
\operatorname{diam}\left(0\left(f, x_{n}\right)\right) \leq \psi\left(\operatorname{diam}\left(0\left(f, x_{n-1}\right)\right)\right)
$$

for all n, it follows that

$$
\operatorname{diam}\left(0\left(f, x_{n}\right)\right) \leq \psi^{n}(\operatorname{diam}(0(f, x))) .
$$

Being the sequence $\left(\operatorname{diam}\left(0\left(f, f^{n} x\right)\right)\right)$ monotone and containing a convergent subsequence $\left(\operatorname{diam}\left(0\left(f, x_{n}\right)\right)\right)$, it follows that it is convergent and

$$
\lim _{n} \operatorname{diam}\left(0\left(f, f^{n} x\right)\right)=0,
$$

i.e., that $\left(f^{n} x\right)$ is a Cauchy sequence. Therefore, $\left(f^{n} x\right) \rightarrow u$ as $n \rightarrow \infty$.

This complete the proof.
REMARK 1. - If we set $\psi(r)=q \cdot r$ for some $q<1, \psi$ is a contractive gauge function. It follows that the L.Ciric's Theorem 1 ([2]) is a special case of Theorem 2.

REMARK 2. - We shall recall that a version of Theorem 2 is given in [3] by the first author. In [3] one assume conditions which ensure that (1) is true for every x_{0} in M and (2) is true for $a n=n(x)$ and $J_{1}=\{(0,0)\}, J_{2}=J_{3}=\emptyset$.

B I BLIOGRAPHY

[1] BROWDER,F.E., Remarks on fixed point of contractive type, Nonlinear Anal. Theory Methods Appl.,3,5(1979), 657-661.
[2] CIRIC, L., On mappings with a contractive iterate, Publ. Inst.Math., Nouvelle serie, 26(40), 1979, 79-82.
[3] CONSERVA,V., un teorema di punto fisso per trasformazioni su uno spazio uniforme di Hausdorfo con una iterata contrattiva in ogni punto (to appear on Le Matematiche - Catania).

Accettato per la pubblicazione su parere favorevole del Prof. G. MUNI

