XII. Fibrazioni di caratteristica p che ammettono gruppi non risolubili i cui p-sottogruppi di Sylow sono gruppi planari.

Sia π un piano di traslazione di ordine p^{2r} che ammetta un gruppo di collineazioni $\mathscr{G}\cong SL(2,p^t)$ dove i p-gruppi di Sylow sono gruppi planari. Generalmente, nei casi che sono conosciuti, il gruppo fissa p^r+1 componenti. Inoltre, se si sa che un gruppo arbitrario fissa alcune componenti purtroppo non si sa quasi nulla. Eppure, per i piani di ordine q^4 , possiamo dire qualcosa. Per esempio:

(12.1) Teorema (Jha, Johnson [32]).

Sia π un piano di traslazione di ordine q^4 che ammetta un gruppo non risolubile g di collineazioni nel complemento di traslazione. Supponiamo che g fissi più diq+1 componenti.

- (1) Sia q dispari, allora $8 | | \mathcal{G} | = il$ 2-rango di $\mathcal{G} \leq 2$. Inoltre, l'involuzione del nucleo è sempre in \mathcal{G} .
- (2) Sia q pari, allora $\mathscr G$ contiene un sottogruppo normale N tale che $N\cong SL(2,2^S)$ per un qualche s, e $|\mathscr G/N|$ è dispari.

In questo caso, ogni 2-sottogruppo di Sylow fissa ogni punto di un sottopiano di Baer. Inoltre, questi sottopiani hanno gli stessi punti all'infinito e quindi N fissa esattamente q^2+1 componenti.

Dimostrazione. (1) q dispari.

(Una traccia)

(12.2) Lemma.

Ogni 2-sottogruppo di Klein deve contenere l'involuzione del nucleo. Sia i questo elemento.

Dimostrazione. Si veda Ostrom [56] per mostrare che se $H = \{1, \alpha, \beta, \alpha\beta\}$ è un 2-gruppo di Klein e $\hat{i} \notin H$ allora $\pi_{\alpha} \cap \pi_{\beta}$ è un sottopiano di ordine q. Eppure, $\mathscr G$ deve fissare più di 1+q componenti.

(12.3) Lemma.

Per g dispari, 8 | 9 |.

Dimostrazione.

Se $2 \| \mathcal{G} \|$, si usa il teorema di Burnside per mostrare che \mathcal{G} ha un 2-complemento normale. In modo simile, se $4 \| \mathcal{G} \|$ allora i 2-gruppi di Sylow sono di Klein. Quindi, $\hat{i} \in \mathcal{G}$ e $\mathcal{G}/\langle \hat{i} \rangle$ è risolubile—una contraddizione.

(12.4) Lemma.

Il 2-rango di g è ≤ 2.

Dimostrazione.

Sia $S = \{1, \alpha, \beta, \alpha\beta, \gamma, \alpha\gamma, \beta\gamma, \alpha\beta\gamma\}$ un gruppo abeliano

elementare in \mathcal{G} . Allora, $L = \{1, \alpha, \beta, \alpha\beta\}$ ed anche $T = \{1, \alpha, \gamma, \alpha\gamma\}$ sono gruppi di ordine A e per (12.1), $L \cap T \supseteq \{\hat{i}\}$, allora $\hat{i} = \alpha$. Ma, anche $M = \{1, \beta, \gamma, \beta\gamma\} \supseteq \{\hat{i}\}$ cosicché $\hat{i} = \beta$.

(12.5) Lemma.

î∈ ⊌.

Dimostrazione.

Sia $\mathcal G$ un 2-gruppo di Sylow di $\mathcal G$. Allora per ((2.2), (3), (4), (5)), $\mathcal G$ contiene un gruppo dei quaternioni $\mathbb Q$ di ordine $\mathbb G$. Sia $\alpha \in \mathbb Q$ l'unico elemento di ordine $\mathbb G$ e supponiamo che α sia di Baer e sia $\pi_{\alpha} = \mathrm{Fix} \ \alpha$. $\mathbb Q$ fissa π_{α} ma $\mathbb Q$ non fissa ogni punto di π_{α} per Foulser [13]. $\mathbb Q \mid \pi_{\alpha}$ deve essere l'involuzione del nucleo di π_{α} . Cioè, $\mathbb Q$ fissa $\mathbb G$ 1+q componenti di $\mathbb G$.

Allora, il sottogruppo di Q che agisce come l'identità su π_{lpha} è un 2-gruppo di Klein, il che non è possibile.

Quindi, abbiamo la dimostrazione per (12.1)(1). La dimostrazione di (2) usa idee simili a quelle in [44].

(12.1) non rimane vero se cambiamo ipotesi e 4 fissa esattamente 1+q componenti perché i piani di Lorimer-Rahilly e di Johnson-Walker di ordine 16 ammettono PSL(2,7) dove tale gruppo fissa esattamente 1+2 componenti.

Eppure, possiamo provare:

(12.6) Teorema (Jha, Johnson [36]).

Sia π un piano di traslazione di ordine $n=p^{2r}$ che ammetta un gruppo $\mathcal G$ nel complemento di traslazione tale che $\sqrt{n} \mid \mathcal G \mid$ e supponiamo che i p-gruppi di Sylow $\mathcal G$ siano planari con $\pi_{\mathcal G}=\mathrm{Fix}\,\mathcal G.$

Supponiamo che l'ordine di $\pi_{\varphi} \ge n^{1/4}$.

- (a) Se \mathcal{G} , allora π è un piano di Hall o $n=5^4$ e π contiene un sottopiano π_0 di Hall di ordine 25 tale che \mathcal{G} fisse π_0 , $\mathcal{G}\supseteq SL(2,5)$ e $\mathcal{G}\cong \mathcal{G}|\pi_0$.
- (b) Se 4 è non risolubile, allora vale l'uno o l'altro: 4 4 cosicché si può applicare (a) o c'è un insieme

$$\pi_{\varphi} \subseteq \pi_{\overline{\varphi}} \subseteq \pi$$

dove $\pi_{\mathcal{G}}$, $\pi_{\overline{\mathcal{G}}}$ sono fissati da ${\mathcal{G}}$ e $\pi_{\mathcal{G}}$ è Desarguesiano. Inoltre, ${\mathcal{G}}|\pi_{\mathcal{G}}\cong a$ una estensione ciclica (meta) di SL(2,5) e il nucleo di questo omomorfismo è risolubile.

Con riferimento ai piani di Lorimer-Rahilly et al. abbiamo:

(12.7) Teorema (Jha, Johnson [36]).

Sia π un piano di traslazione di ordine $n=p^{2r}$ che ammetta un gruppo $\mathcal G$ nel complemento di traslazione tale che $p\sqrt{n} \mid \mathcal G \mid$ e supponiamo che i p-gruppi di Sylow $\mathcal G$ siano planari con $\pi_{\mathcal G} = \operatorname{Fix} \mathcal G$, e l'ordine di $\pi_{\mathcal G}$ sia $\geq n^{1/4}$.

Allora,

- (a) π ha ordine pari, $|\mathcal{Y}| = 2\sqrt{n}$ e $\pi_{\mathcal{Y}}$ ha ordine $n^{1/4}$. \mathcal{Y} contiene un sottogruppo abeliano elementare E tale che $[\mathcal{Y}:E]=2$ e π_{F} è un sottopiano Desarguesiano di Baer.
- (b) Se & è non risolubile, allora π è un piano di ordine 16 di Dempwolff, Lorimer-Rahilly o Johnson-Walker.
- (c) Se 4 non contiene un sottogruppo abeliano elementare di ordine \sqrt{n} , allora 4 è non risolubile cosicché si può applicare il caso (b).

Dimostrazione.

(12.7)—Traccia.

(12.8) Lemma.

p = 2.

Dimostrazione.

Si usa Foulser [13] per mostrare che π_E (in (a)) è Desarguesiano da cui è chiaro che p=2 perché $\pi_{\mathcal{G}}\subseteq\pi_E$ cosicché $\mathcal{G}|\pi_E\cong \mathcal{G}$ Aut $\mathrm{GF}(q^2)$.

(12.9) Lemma.

Se & è non risolubile allora $S \supseteq SL(2,q^2)$ of PSL(2,7) e n=16.

Dimostrazione.

Si può usare il teorema di Dempwolff (8.3).

Ora, per finire la dimostrazione, si può usare FoulserJohnson (7.7) e lo studio di Johnson [43] sui piani di
traslazione di ordine 16.

La dimostrazione di (12.6) è più difficile di (12.7) e usa la teoria della rappresentazione di SL(2,q) negli spazi vettoriali di dimensione 4r su GF(p).

Infatti, quando π non è un piano di Hall nell'ipotesi di (12.6) c'è un GF(p)SL(2,q) modulo V con $|V|=q^4$. (V è una componente di π .)