series γ_d^n satisfies d = n+1.

For n=2, the \mathscr{D} -Weierstrass points are the 9 inflexions. For n=5, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics = points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If $p \not\mid (n+1)$, the \mathscr{D} -W-points have multiplicity one.

(ii) If
$$p^k|(n+1)$$
, $p^{k+1}(n+1)$ with $k \ge 1$, then one of the following holds:

(a) \mathscr{C} is ordinary and there are $(n+1)^2/p^k \mathscr{D} - W$ -

- 25 -

points with multiplicity p^k;

(b) \mathscr{C} is supersingular and there are $(n+1)^2/p^{2k}$ \mathscr{D} -W-points with multiplicity p^{2k} .

THEOREM 12.2: If 'C is elliptic with origin 0 and \mathscr{D} is a complete linear system on C, then

(i) D is classical;

(ii) \mathscr{D} is Frobenius classical except perhaps when $\mathscr{D} = |(\sqrt{q}+1)0|$; (iii) $|(\sqrt{q}+1)0|$ is Frobenius classical if and only if N< $(\sqrt{q}+1)^2$.

13. HYPERELLIPTIC CURVES

As in §5, if $p \neq 2$, then \mathscr{C} has homogeneous equation $y^2 z^{d-2} = z^d f(x/z)$ with $g = \left[\frac{1}{2}(d-1)\right]$. Let g > 1 and let P_1, \ldots, P_n be the ramification points of the double cover (= double points of the γ_2^1 on \mathscr{C});

then n=2(g+1) from the formula beginning §12. When d is even, they are the points with y=0; when d is odd, they are these plus P(0,1,0). Let n_o be the number of K-rational P_i.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_2^1 = |D|$ and n, n_0 as above. If there is a positive integer n_1 such that $|(n_1+g)D|$ is Frobenius classical, then

$$|N-(q+1)| \leq g(2n_1+g)+(2n_1+g)^{-1}\{g(q-n_0)-g^3-g\}.$$

Note: If $p \ge 2(n_1+g)$, then the hypothesis is fulfilled.

COROLLARY: Let $p \ge 5$ with $p=c^2+1$ or $p=c^2+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with g>1 over GF(p). Then

 $|N-(p+1)| \le g[2\sqrt{p}] - 1.$

14. PLANE CURVES

-

Let \mathscr{C} be a non-singular, plane curve of degree d over K=GF(q); then $g = \frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as z=0.

Let x,y be affine coordinates. The monomials $x^{i}y^{j}$, $i, j \ge 0$, $i+j \le m$ span L(mD) and are linearly independent for m < d. Hence dim $|mD| = \frac{1}{2}m(m+3)$ for m < d. Also, mD is a special divisor for m \le d-3. Thus |mD| is cut out by all curves of degree m.

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with m \leq d - 3 such that |mD| is Frobenius classical, then

$$N \leq \frac{1}{2}(m^2 + 3m - 2)(g - 1) + 2d(m + 3)^{-1}\{q + \frac{1}{2}m(m + 3)\}.$$