series γ_{d}^{n} satisfies $d=n+1$.
For $n=2$, the \mathscr{D}-Weierstrass points are the 9 inflexions. For $n=5$, they are the 9 inflexions (repeated) plus the 27 sextactic points (6-fold contact points of conics $=$ points of contact of tangents through the inflexions).

The above holds for the complex numbers; for finite fields, the result is the following.

THEOREM 12.1: (i) If $\mathrm{p} \dot{Y}(\mathrm{n}+1)$, the \mathscr{D}-W-points have multiplicity one .
(ii) If $p^{k} \mid(n+1), p^{k+1} \nmid(n+1)$ with $k \geq 1$, then one of the following holds:
(a) \mathscr{C} is ordinary and there are $(n+1)^{2} / \mathrm{p}^{\mathrm{k}} \mathscr{D}-W-$ points with multiplicity p^{k};
(b) \mathscr{C} is supersingular and there are $(\mathrm{n}+1)^{2} / \mathrm{p}^{2 \mathrm{k}}$ $\mathscr{D}-\mathrm{W}$-points with multiplicity $\mathrm{p}^{2 \mathrm{k}}$.

THEOREM 12.2: If \mathscr{C} is elliptic with origin 0 and \mathscr{D} is a complete linear system on \mathscr{C}, then
(i) \mathscr{D} is classical;
(ii) \mathscr{D} is Frobenius classical except perhaps when $\mathscr{D}=|(\sqrt{q}+1) 0|$;
(iii) $|(\sqrt{q}+1) 0|$ is Frobenius classical if and only if $N<(\sqrt{q}+1)^{2}$.

13. HYPERELLIPTIC CURVES

As in $\S 5$, if $\mathrm{p} \neq 2$, then \mathscr{C} has homogeneous equation $\mathrm{y}^{2} \mathrm{z}^{\mathrm{d}-2}=\mathrm{z}^{\mathrm{d}} \mathrm{f}(\mathrm{x} / \mathrm{z})$ with $g=\left[\frac{1}{2}(d-1)\right]$. Let $g>1$ and let P_{1}, \ldots, P_{n} be the ramification points of the double cover ($=$ double points of the r_{2}^{1} on \mathscr{C});
then $n=2(g+1)$ from the formula beginning §12. When d is even, they are the points with $y=0$; when d is odd, they are these plus $P(0,1,0)$. Let n_{o} be the number of K-rational P_{i}.

THEOREM 13.1: Let \mathscr{C} be hyperelliptic with a complete $\gamma_{2}^{1}=$ $|D|$ and n, n_{o} as above. If there is a positive integer n_{1} such that $\left|\left(n_{1}+g\right) D\right|$ is Frobenius classical, then

$$
|N-(q+1)| \leq g\left(2 n_{1}+g\right)+\left(2 n_{1}+g\right)^{-1}\left\{g\left(q-n_{o}\right)-g^{3}-g\right\} .
$$

Note: If $p \geq 2\left(n_{1}+g\right)$, then the hypothesis is fulfilled.
COROLLARY: Let $p \geq 5$ with $p=c^{2}+1$ or $p=c^{2}+c+1$ for some positive integer c and let \mathscr{C} be hyperelliptic with $g>1$ over $G F(p)$. Then

$$
|N-(p+1)| \leq g[2 \sqrt{p}]-1 .
$$

14. PLANE CURVES

Let \mathscr{C} be a non-singular, plane curve of degree d over $K=G F(q)$; then $g=\frac{1}{2}(d-1)(d-2)$. Let D be a divisor cut out by a line, which can be taken as $\mathrm{z}=0$.

Let x, y be affine coordinates. The monomials $x^{i} y^{j}, i, j \geq 0, i+j \leq m$ span $L(m D)$ and are linearly independent for $m<d$. Hence dim|mD|= $=\frac{1}{2} m(m+3)$ for $m<d$. Also, $m D$ is a special divisor for $m \leq d-3$. Thus $\mid m D$ is cut out by all curves of degree m.

THEOREM 14.1: Let \mathscr{C} be a plane curve of degree d and let D be a divisor cut out by a line. If m is a positive integer with $\mathrm{m} \leq \mathrm{d}-3$ such that $|\mathrm{mD}|$ is Frobenius classical, then

$$
N \leq \frac{1}{2}\left(m^{2}+3 m-2\right)(g-1)+2 d(m+3)^{-1}\left\{q+\frac{1}{2} m(m+3)\right\} .
$$

