9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

$$W = \det \begin{bmatrix} \begin{pmatrix} \varepsilon \\ 0 \end{pmatrix} & f_0 \end{pmatrix} & \cdots & \begin{pmatrix} \varepsilon \\ 0 \end{pmatrix} & f_n \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \begin{pmatrix} \varepsilon \\ n \end{pmatrix} & f_0 \end{pmatrix} & \vdots \\ \begin{bmatrix} \varepsilon \\ n \end{pmatrix} & f_n \end{bmatrix}$$

Here the derivations are taken with respect to a separating variable t (dt is the image of t under the map d : $\bar{K}(\mathscr{C}) \rightarrow \Omega_{\bar{K}}$; see Fulton [3] p. 203).

The ε_i are required to satisfy the conditions:

(i)
$$0 = \varepsilon_0 < \varepsilon_1 < \dots < \varepsilon_n;$$

(ii) $W \neq 0;$

(iii) given $\varepsilon_0, \ldots, \varepsilon_{i-1}$, then ε_i is chosen as small as possible such that $D = f_{1}$, $f_{1} = f_{1}$ are linearly independent.

Then

(iv) the ε_i are the (\mathcal{D}, P)-orders at a general point P; (v) $\varepsilon_i < r_i$ for any $r_0 < \dots < r_n$ with det $(D^{(r_i)}f_i) \neq 0;$ (vi) $\varepsilon_i \leq j_i$ for any P in \mathscr{C} ; (vii) the ε_i are called the \mathcal{D} -<u>orders</u> of \mathscr{C} .

The divisor

$$R = div(W) + \left(\sum_{0}^{n} \varepsilon_{i}\right) div(dt) + (n+1) \sum_{0}^{n} e_{0}P,$$

where dt is the differential of t and $e_p = -\min_i \operatorname{ord}_P f_i$, is the <u>ramification divisor</u> of \mathscr{D} and depends only on \mathscr{D} . Putting R = $\Sigma r_p P$, we have

$$\deg R = \Sigma r_p = (2g-2)\Sigma \varepsilon_i + (n+1)d.$$

THEOREM 9.1: $r_p \ge i \sum_{i=0}^{n} (j_i - \epsilon_i)$ with equality if and only if det $C \neq 0 \pmod{p}$, where $C = (c_{is})$ and $c_{is} = (j_i) + c_{s} + c_{s}$.

COROLLARY: (i) R is effective.

(ii) $r_P = 0$ if and only if $j_i = \varepsilon_i$ for $0 \le i \le n$.

The points P where $r_p=0$ are called \mathscr{D} -<u>ordinary</u>; the others are called \mathscr{D} -<u>Weierstrass</u>. The number r_p is the <u>weight</u> of P. When \mathscr{D} is the canonical series, the \mathscr{D} -Weierstrass points are simply the <u>Weierstrass points</u>. This coincides with the classical definition. When $\varepsilon_i = i$, $0 \le i \le n$, then \mathscr{D} is <u>classical</u>. Next, the estimate $\varepsilon_i \le j_i$ is improved.

THEOREM 9.2: (i) Let P on & have (\mathcal{D}, P) -orders j_0, \ldots, j_n and suppose that det C' \neq 0 (mod p), where C'= (c'_{is}) and c'_{is} = (\frac{j_i}{r_s}),

then $D^{(r_0)}f,\ldots,D^{(r_n)}f$ are linearly independent and $\varepsilon_i \leq r_i$.

(ii) If $\prod_{i>s}^{\Pi} (j_i - j_s)/(i-s) \neq 0 \pmod{p}$, then \mathscr{D} is classical and $r_p = \sum_{i=0}^{n} (j_i - i)$

(iii) If p > d or p=0, then $r_p = \sum_{0}^{n} (j_i-i)$ for all P in \mathscr{C} . (iv) If ε is a \mathscr{D} -order and μ is an integer with $\binom{\varepsilon}{\mu} \neq 0 \pmod{p}$, then μ is also a \mathscr{D} -order. (v) If ε is a \mathscr{D} -order and $\varepsilon < p$, then $0, 1, \ldots, \varepsilon - 1$ are also \mathscr{D} -orders.

Entering into this theorem is the classical result of Lucas.

LEMMA 9.3: Let $A=a_0+a_1p+\ldots+a_mp^m$ and $B=b_0+b_1p+\ldots+b_np^m$ be p-adic expansions of A and B with respect to the prime p; that is, $0 \le a_i$, $b_i \le p-1$. Then

(i)
$$\binom{A}{B} \equiv \binom{a_0}{b_0} \binom{a_1}{b_1} \cdots \binom{a_m}{b_m} \pmod{p};$$

(ii) $\binom{A}{B} \neq 0 \pmod{p}$ if and only if $a_i \ge b_i$, all i;
Proof: $(1+x)^A = (1+x)^{\sum a_i p^i}$
 $= (1+x)^{a_0} (1+x^p)^{a_1} \cdots (1+x^{p^m})^{a_m}.$

Now, the result follows by comparing the coefficient of \mathbf{x}^{B} on both sides.

.