9. THE GENERALIZED WRONSKIAN

Consider the generalized Wronskian

$$
W=\operatorname{det}\left[\begin{array}{cccc}
D^{\left(\varepsilon_{o}\right)} & & { }^{\left(\varepsilon_{0}\right)}{ }_{\mathrm{f}} & \ldots \\
\mathrm{f}_{\mathrm{o}} \\
\vdots & & & \vdots \\
D^{\left(\varepsilon_{\mathrm{n}}\right)} & & \\
\mathrm{f}_{\mathrm{o}} & \ldots & D^{\left(\varepsilon_{\mathrm{n}}\right)} & \mathrm{f}_{\mathrm{n}}
\end{array}\right]
$$

Here the derivations are taken with respect to a separating variable t (dt is the image of t under the map $d: \bar{K}(\mathscr{C}) \rightarrow \Omega_{\bar{K}}$; see Fulton [3] p. 203).

The ε_{i} are required to satisfy the conditions:
(i) $0=\varepsilon_{0}<\varepsilon_{1}<\ldots<\varepsilon_{n}$;
(ii) $W \neq 0$;
(ij) given $\varepsilon_{o}, \ldots, \varepsilon_{i-1}$, then ε_{i} is chosen as small as possible such that $\left.D^{\left(\varepsilon_{0}\right)}{ }_{f}, \ldots,\right)^{\tau_{1}}$ f are linearly independent.

Then
(iv) the ε_{i} are the (\mathscr{D}, P)-orders at a general point P;
(v) $\varepsilon_{i} \leq r_{i}$ for any $r_{o}<\ldots<r_{n}$ with $\operatorname{det}\left(D^{\left(r_{i}\right)} f_{j}\right) \neq 0$;
(vi) $\varepsilon_{i} \leq j_{i}$ for any P in \mathscr{C};
(vii) the ε_{i} are called the \mathscr{D}-orders of \mathscr{C}.

The divisor

$$
R=\operatorname{div}(W)+\left(\sum_{0}^{n} \varepsilon_{i}\right) \operatorname{div}(d t)+(n+1) \sum_{p} e_{p} p,
$$

where $d t$ is the differential of t and $e_{p}=\underset{i}{-m i n} \operatorname{ord}_{P_{i}}$, is the ramification divisor of \mathscr{P} and depends only on \mathscr{D}. Putting $\mathrm{R}=$ $=\Sigma r_{p} P$, we have

$$
\operatorname{deg} R=\Sigma r_{p}=(2 g-2) \Sigma \varepsilon_{i}+(n+1) d
$$

THEOREM 9.1: $r_{p} \geq \sum_{i=0}^{n}\left(j_{i}-\varepsilon_{i}\right)$ with equality if and only if det $C \neq 0(\bmod p)$, where $C=\left(c_{i s}\right)$ and $c_{i s}=\left(\begin{array}{c}j_{i}\end{array}\right)$.

COROLLARY: (i) R is effective.
(ii) $r_{P}=0$ if and only if $j_{i}=\varepsilon_{i}$ for $0 \leq i \leq n$.

The points P where $r_{p}=0$ are called \mathscr{D}-ordinary; the others are called \mathscr{D}-Weierstrass. The number r_{p} is the weight of P. When \mathscr{D} is the canonical series, the \mathscr{D}-Weierstrass points are simply the Weierstrass poin'ts. This coincides with the classical definition.

When $\varepsilon_{i}=i, 0 \leq i \leq n$, then \mathscr{D} is classical. Next, the estimate $\varepsilon_{i} \leq j_{i}$ is improved.

THEOREM 9.2: (i) Let P on \mathscr{C} have (\mathscr{D}, P)-orders j_{o}, \ldots, j_{n} and suppose that det $C^{\prime} \not \equiv 0(\bmod p)$, where $C^{\prime}=\left(c_{i s}^{\prime}\right)$ and $c_{i s}^{\prime}=\binom{j_{i}}{r_{s}}$, then $D^{\left(r_{o}\right)}{ }_{f, \ldots, D}^{\left(r_{n}\right)} f$ are linearly independent and $\varepsilon_{i} \leq r_{i}$.
(ii) If $i_{i>s}^{I}\left(j_{i}-j_{s}\right) /(i-s) \not \equiv 0(\bmod p)$, then \mathscr{D} is classical and $r_{p}=\sum_{i=0}^{n}\left(j_{i}-i\right)$
(iii) If $p>d$ or $p=0$, then $r_{p}=\sum_{o}^{n}\left(j_{i}-i\right)$ for all P in \mathscr{C}.
(iv) If ε is a \mathscr{D}-order and μ is an integer with $\binom{\varepsilon}{\mu} \not \equiv 0(\bmod p)$, then μ is also a \mathscr{D}-order.

$$
\text { (v) If } \varepsilon \text { is a } \mathscr{D} \text {-order and } \varepsilon<\text { p, then } 0,1, \ldots, \varepsilon-1
$$

are also \mathscr{D}-orders.
Entering into this theorem is the classical result of Lucas.
LEMMA 9.3: Let $A=a_{0}+a_{1} p+\ldots+a_{m} p^{m}$ and $B=b_{o}+b_{1} p+\ldots+b_{n} p^{m}$ be $p-$ adic expansions of A and B with respect to the prime p; that is, $0 \leq a_{i}, b_{i} \leq p-1$. Then
(i) $\left({ }_{B}^{A}\right) \equiv\left({ }_{b}{ }_{0}\right)\left({ }^{a} b_{1}\right) \ldots\left({ }_{b}{ }^{a_{m}}\right)(\bmod p)$;
(ii) $\left(\begin{array}{c}A \\ B\end{array} \not \equiv 0(\bmod p)\right.$ if and only if $a_{i} \geq b_{i}$, all i;

Proof: $(1+x)^{A}=(1+x)^{\sum a_{i} p^{1}}$

$$
=(1+x)^{a_{o}}\left(1+x^{p}\right)^{a_{1}} \ldots\left(1+x^{p^{m}}\right)^{a_{m}}
$$

Now, the result follows by comparing the coefficient of x^{B} on both sides.

