and

$$N_1^2$$
 - $(2q+2-g)N_1 + (q+1)^2 - (q^2+1)g - 2qg^2 \le 0$,

from which the result follows.

For
$$g > \frac{1}{2}(q - \sqrt{q})$$
, Ihara's result is better than Serre's

4. THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let \mathscr{C} be as in §2, but consider it as a curve over \bar{K} , the algebraic closure of K = GF(q). Also suppose that \mathscr{C} is embedded in the plane PG(2, \bar{K}) and let φ be the Frobenius map given by

$$P(x_{0}, x_{1}, x_{2})\varphi = P(x_{0}^{q}, x_{1}^{q}, x_{2}^{q})$$

where $P(x_0, x_1, x_2)$ is the point of the plane with coordinate vector

 (x_0, x_1, x_2) . Then

$$\mathscr{C} = V(F)$$

= {P(x₀, x₁, x₂) | F(x₀, x₁, x₂) = 0 }

for some form F in $K[X_0, X_1, X_2]$. Also $\mathscr{C}\varphi = \mathscr{C}$ and the points of \mathscr{C} rational over GF(q) are exactly the fixed points of φ on \mathscr{C} . For any non-singular point $P=P(x_0, x_1, x_2)$ the tangent T_p at P is

$$\Gamma_{p} = V\left(\frac{\partial F}{\partial x_{0}} X_{0} + \frac{\partial F}{\partial x_{1}} X_{1} + \frac{\partial F}{\partial x_{2}} X_{2}\right) .$$

In affine coordinates,

$$T_{p} = V(\frac{\partial f}{\partial a}(x-a) + \frac{\partial f}{\partial b}(x-b))$$

where f(x,y) = F(x,y,1).

Instead of looking at fixed points of φ , let us look at the set of points such that $P \varphi \in T_p$. As $P \in T_p$, this set contains the GF(q)-rational points of \mathscr{C} . Let

$$h = (x^{q} - x)f_{x} + (y^{q} - y)f_{y}.$$

Then

$$h_{x} = (qx^{q-1}-1)f_{x} + (x^{q}-x)f_{xx} + (y^{q}-y)f_{yx}$$
$$= -f_{x} + (x^{q}-x)f_{xx} + (y^{q}-y)f_{yx}$$

and

$$h_y = -f_y + (x^q - x)f_{xy} + (y^q - y)f_{yy}.$$

So V(h) and V(f) have a common tangent at any GF(q)-rational point of $\mathscr C$ that is non-singular. So, if N is the number of GF(q)-rational points of $\mathscr C$ and the degree of f is d, then Bézout's theorem implies, when f is not a component of h, that

```
(d+q-1)d = deg h deg f
= sum of the intersection numbers at
the points of V(f) \cap V(h)
\geq 2N.
```

Hence N $\leq \frac{1}{2}d(d+q-1)$.

Now, suppose that V(f) is a component of V(h), or equivalently that h=0 as a function an V(f). Therefore

$$(x^{q}-x)f_{x}/f_{y} + (y^{q}-y) = 0,$$

 $(x^{q}-x)\frac{dy}{dx} - (y^{q}-y) = 0.$

Differentiating gives

$$(x^{q}-x) \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} - \frac{d}{dx}(y^{q}-y) = 0$$

Remembering that $\frac{d}{dx} = \frac{\partial}{\partial x} + \frac{dy}{dx} \frac{\partial}{\partial y}$, we obtain that

$$(x^{q}-x) \frac{d^{2}y}{dx^{2}} = 0$$
$$\frac{d^{2}y}{dx^{2}} = 0.$$

Since
$$\frac{dy}{dx} = -f_x/f_y$$
, it follows that

$$\frac{d^2y}{dx^2} = -f_y^{-2} \{f_{xx}f_{y2}-2f_{xy}f_xf_y + f_{yy}f_{x2}\}.$$
The property is the set of $\frac{d^2y}{dx^2}$ is a set of the set of

THEOREM 4.1: If $\frac{d}{dx^2} \neq 0$, that is, \mathscr{C} is not all inflexions and $\frac{d}{dx^2}$

q is odd, then $N \leq \frac{1}{2} d(d+q-1)$.

In fact $\frac{d^2y}{dx^2} = 0$ can only occur when \mathscr{C} is a line or the characteristic $p \leq d$. For example, when $f = x^{p^r+1} + y^{p^r+1}+1$, then \mathscr{C} is all inflexions. A particular case of this phenomenon is the Hermitian curve $\mathscr{U}_{2,q} = V(X_0^{\sqrt{q+1}} + \chi) + X_2^{\sqrt{q+1}})$ when q is a square.

Since every curve of genus 3 can be embedded in the plane as a non-singular quartic, we can see how theorem 4.1 compares with Serre's bound for $N_q(3)$ and its actual value.

q	3	5	7	9	11	13	17	19
2(q+3)	12	16	20	24	28	32	40	44
q+1+3 [2√a	ā] 13	18	23	28	30	35	42	44
N _q (3)	10	16	20	28	28	32	40	44

Thus, for q odd with q \leq 19 and q \neq 3 or 9, the theorem gives the best possible result. A curve achieving $N_9(3)$ is $\mathscr{U}_{2,9}$.

5. WEIERSTRASS POINTS IN CHARACTERISTIC ZERO.

First consider the canonical curve \mathscr{C}^{2g-2} of genus g > 3 in $PG(g-1, \mathbb{C})$. The Weierstrass points, W-points for short, are the points at which the osculating hyperplane has g coincident intersections. In this case, with w the number of W-points

$$w = g(g^2 - 1)$$
.

In any case,

$$2g + 2 \leq \dot{w} \leq g(g^2 - 1)$$

with the lower bounded achieved only for hyperelliptic curves. A curve of genus g > 1 is <u>hyperelliptic</u> if it has a linear series γ_2^{\perp} (a 2-sheeted covering) on it; for example, a plane quartic with a double point. It has equation

$$y^2 = f(x)$$

with genus $g = \left[\frac{1}{2}(d-1)\right]$ where $d = \deg f$.

Consider the case g=3 of the canonical curve \mathscr{C}^4 , a non-singular plane quartic. The W-points are the 24 inflexions. We note that