and

$$
N_{1}^{2}-(2 q+2-g) N_{1}+(q+1)^{2}-\left(q^{2}+1\right) g-2 q g^{2} \leq 0,
$$

from which the result follows.
For $g>\frac{1}{2}(q-\sqrt{q})$, Ihara's result is better than Serre's.

4. THE ESSENTIAL IDEA IN A PARTICULAR CASE

Let \mathscr{C} be as in $\S 2$, but consider it as curve over \bar{K}, the algebraic closure of $K=G F(q)$. Also suppose that \mathscr{C} is embedded in the plane $\operatorname{PG}(2, \bar{K})$ and $\operatorname{let} \varphi$ be the Frobenius map given by

$$
P\left(x_{o}, x_{1}, x_{2}\right) \varphi=P\left(x_{o}^{q}, x_{1}^{q}, x_{2}^{q}\right)
$$

where $P\left(x_{0}, x_{1}, x_{2}\right)$ is the point of the plane with coordinate vector $\left(x_{0}, x_{1}, x_{2}\right)$. Then

$$
\begin{aligned}
\mathscr{C} & =V(F) \\
& =\left\{P\left(x_{0}, x_{1}, x_{2}\right) \mid F\left(x_{0}, x_{1}, x_{2}\right)=0\right\}
\end{aligned}
$$

for some form F in $K\left[X_{0}, X_{1}, X_{2}\right]$. Also $\mathscr{C} \varphi=\mathscr{C}$ and the points of \mathscr{C} rational over $G(. q)$ are exactly the fixed points of φ on \mathscr{C}.

For any non-singular point $P=P\left(x_{0}, x_{1}, x_{2}\right)$ the tangent T_{p} at P is

$$
T_{p}=V\left(\frac{\partial F}{\partial x_{0}} X_{o}+\frac{c}{\hat{o} x_{1}} X_{1}+\frac{\partial F}{\partial x_{2}} X_{2}\right)
$$

In affine coordinates,

$$
T_{p}=V\left(\frac{\partial f}{\partial a}(x-a)+\frac{\partial f}{\partial b}(x-b)\right)
$$

where $f(x, y)=F(x, y, 1)$.

Instead of looking at fixed points of φ, let us look at the set of points such that $P \varphi \in T_{p}$. As $P \in T_{p}$, this set contains the $G F(q)-$ rational points of \mathscr{C}. Let

$$
h=\left(x^{q}-x\right) f_{x}+\left(y^{q}-y\right) f_{y} .
$$

Then

$$
\begin{aligned}
h_{x} & =\left(q x^{q-1}-1\right) f_{x}+\left(x^{q}-x\right) f_{x x}+\left(y^{q}-y\right) f_{y x} \\
& =-f_{x}+\left(x^{q}-x\right) f_{x x}+\left(y^{q}-y\right) f_{y x}
\end{aligned}
$$

and

$$
h_{y}=-f_{y}+\left(x^{q}-x\right) f_{x y}+\left(y^{q}-y\right) f_{y y} .
$$

So $V(h)$ and $V(f)$ have a common tangent at any $G F(q)$-rational point of \mathscr{C} that is non-singular. So, if N is the number of $G F(q)$-rational points of \mathscr{C} and the degree of f is d, then Bézout's theorem implies, when f is not a component of h, that

$$
\begin{aligned}
(\mathrm{d}+\mathrm{q}-1) \mathrm{d}= & \operatorname{deg} \mathrm{h} \text { deg } \mathrm{f} \\
= & \text { sum of the intersection numbers at } \\
& \text { the points of } V(\mathrm{f}) \cap \mathrm{V}(\mathrm{~h}) \\
\geq & 2 \mathrm{~N} .
\end{aligned}
$$

Hence $\mathrm{N} \leq \frac{1}{2} \mathrm{~d}(\mathrm{~d}+\mathrm{q}-1)$.
Now, suppose that $V(f)$ is a component of $V(h)$, or equivalently that $h=0$ as a function an $V(f)$. Therefore

$$
\begin{aligned}
& \left(x^{q}-x\right) f_{x} / f_{y}+\left(y^{q}-y\right)=0, \\
& \left(x^{q}-x\right) \frac{d y}{d x}-\left(y^{q}-y\right)=0 .
\end{aligned}
$$

Differentiating gi:es

$$
\left(x^{q}-x\right) \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-\frac{d}{d x}\left(y^{q}-y\right)=0
$$

Remembering that $\frac{d}{d x}=\frac{\partial}{\partial x}+\frac{d y}{d x} \frac{\partial}{\partial y}$, we obtain that

$$
\begin{aligned}
& \left(x^{q}-x\right) \frac{d^{2} y}{d x^{2}}=0 \\
& \frac{d^{2} y}{d x^{2}}=0
\end{aligned}
$$

Since $\frac{d y}{d x}=-f_{x} / f_{y}$, it follows that

$$
\frac{d^{2} y}{d x^{2}}=-f_{y}^{-2}\left\{f_{x x} f_{y} 2-2 f_{x y} f_{x} f_{y}+f_{y y} f_{x} 2\right\}
$$

THEOREM 4.1: If $\frac{d^{2} y}{d x^{2}} \neq 0$, that is, \mathscr{C} i.s not all inflexions and 0 is odd, then $N \leq \frac{1}{2} d(d+q-1)$.

In fact $\frac{d^{2} y}{d x^{2}}=0$ can $\begin{gathered}\text { occur when } \mathscr{C} \\ \text { is a line or the charate }\end{gathered}$ ristic $? \leq d$. For example, when $f=x^{p^{r}+1}+y^{p^{r}+1}+1$, then \mathscr{C} is all inflexions. A particular case of this phenomenon is the Hermitian cure $Z_{2, q}=V\left(X_{0}^{\sqrt{q}+1}+\cdots+X_{2}^{\sqrt{q}+1}\right)$ when q is a square.

Since every curve of genus 3 can be embedded in the plane as a non-singular quartic, we can see how theorem 4.1 compares with Serre's bound for $\mathrm{N}_{\mathrm{q}}(3)$ and its actual value.

q	3	5	7	9	11	13	17	19
$2(q+3)$	12	16	20	24	28	32	40	44
$q+1+3[2 \sqrt{q}]$	13	18	23	28	30	35	42	44
$\mathrm{~N}_{\mathrm{q}}(3)$	10	16	20	28	28	32	40	44

Thus, for q odd with $\mathrm{q} \leq 19$ and $\mathrm{q} \neq 3$ or 9 , the theorem gives the best possible result. A curve achieving $\mathrm{N}_{9}(3)$ is $\mathscr{U}_{2,9}$.

5. WEIERSTRASS POINTS IN CHARACTERISTIC ZERO.

First consider the canonical curve $B^{2 g-2}$ of genus $g \geq 3$ in $\operatorname{PG}(\mathrm{g}-1, \mathbb{C})$. The Weierstrass points, W-points for short, are the points at which the osculating hyperplane has g coincident intersections. In this case, with w the number of W-points

$$
\mathrm{w}=\mathrm{g}\left(\mathrm{~g}^{2}-1\right) .
$$

In any case,

$$
2 g+2 \leq \dot{w} \leq g\left(g^{2}-1\right)
$$

with the lower bounded achieved only for hyperelliptic curves. A curve of genus $g>1$ is hyperelliptic if it has a linear series $\gamma \frac{1}{2}$ (a 2 -sheeted covering) on it; for example, a plane quartic with a double point. It has equation

$$
y^{2}=f(x)
$$

with genus $g=\left[\frac{1}{2}(d-1)\right]$ where $d=\operatorname{deg} f$.
Consider the case $g=3$ of the canonical curve \mathscr{C}^{4}, a non-singular plane quartic. The W-points are the 24 inflexions. We note that

