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I. Introduction

It is a basic result of ring theory that the set of endomorphisms of an abelian group is a
ring under functon addition and composition and furthermore every ring is isomorphic to a
subring of a ring of this type. If the group is not abelian then the set of endomorphisms is
no longer closed under addition. This leads one to the study of near-rings. It is the purpose
of this paper to present a survey of some of the more recent results in the area of near-rings
of group mappings. We start with some basic definitions and concepts to be used
throughout the paper. For further details about these concepts and other results in near-ring
theory we refer the rez:ier to the books of Meldrum, [14] and Pilz, [17].

We recall that a pear-ring N := (N,+,-) is a set N with binary operations of addition +

and multplication - such that
(i) (N,+)1s a group (not necessarily abelian) with neutral element O;

(1) (N,-) is a semigroup;
(iii) (a+b)c = ac + be, Va,bc € N.
More precisely we have defined a right near-ring. Using

(i)' a(b+c)=ab + ac, Va,b,c e N
one gets a left near-ring. Henceforth we consider only right near-rings and refer to them as
"near-rings". Examples of near-rings are abundant. They arise in a natural manner when

one deals with "non-linear” mappings.

Examples: Let (G,+) be a group with neutral element 0, let T be a topological group, V a
vector space and R a commutative ring. With respect to function addition, +, and function

composition, -, the following are near-rings:
(a) M(G):={f:G - G};
(b) M,(G) := {f e M(G) I £(0) =0};
() M, (T):={fe M(T) | fis continuous on T};
(d) M (V) :={fe M(V)Ifisan affine map on V};
(¢) R[x]:={flf1sa polynomial over R in a single indeterminant, x}.

Further every ring is a near-ring and if we define * on any group (G,+) by axb = a,
a,be G then we get a near-ring (G,+,*), i.e., every group can be made into a near-ring.



A near-ring N Is said to be zero-symmetric if a0 = 0-a=0 Vae N. A near-ring N is a
near-ring with identity if 31 € N such thati-a = ai = a, Va € N. In the sequel all near-

rings will be zero-symmetric with identity.

Let G be a group, End G the monoid of endomorphisms of G and let S < End G be
any semugroup of endomorphisms of G such that the zero map and identty map are in S.
We discuss two ways of associating near-rings with the pair (G,S).

Distibutively generated near-rings, Let dg S denote the subgroup of M(G) generated by S.

n
Thusdg S = {f = Z to,lo, e S). Itis straightforward to verify that dg S is a near-ring,

i=1

zero-symmetric and with idendty. We call dg S the near-ring distributively generated by S.

Centralizer near-rings, Let M((G) = {f € M(G) | fo = of, Vo € §}. Since S contains the
zero map we see that M¢(G) is a zero-symmetric near-ring with identity. We cail M¢(G) the
li -1 ' .

Our main focus in the remainder of this paper will be on various centralizer near-rings
although distributvely generated near-rings will reappear.

A near-field is a near-ring N with the property that (N* := N - {0},") is a group.
Historically near-fields were the first class of near-rings investigated. In 1905, L.E.
Dickson gave the first example of 2 near-field which is not a field. In 1936, H. Zassenhaus
determined all finite fields. He found that, except for seven isomorphism types, all finite

near-fields can be constructed by a method going back to Dickson.
Subnear-rings and homomorphisms are defined in the usual manner. The ideals of a

near-ring N are defined as kernels of near-ring homomorphisms. This gives rise to the
internal characterization that a subset I of a near-ring N is an ideal of N if

(1) (,+) is a normal subgroup of (N,+);

(i) Vae I, Vnome N, n(a+m) - nm € [;

(ui) Vae I, Vne N,ane L

A subset A of N satisfying (i) and (ii) of the above def*nition is called a Jeft ideal of N
and a subgroup (B,+) of (N,+) is an N-subgroupifnbe B, Vne N, Vb e B.

We define the ], radical of a near-ring N as the intersection of all ideals of N which are
maximal as N-subgroups and we denote this radical by J,(N). When N is a ring the J5

radical corresponds to the Jacobson radical of the ring.

A near-ring N is simple when the only ideals of N are {0} and N. A near-ring is 2-
semisimple when J,(N) = {0}. When N is finite, J,(N) 1s the intersection of all maximal
ideals of N and N is 2-semisimple if and only if N is the direct sum of simple near-rings.

The interest in centralizer near-rings stems from the following result which shows that
such near-rings are general in the sense that every near-ring (as usual, zero-symmetric with
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identity) arises as a centralizer near-ring.

Theorem L1, Let N be a near-ring. Then there exists a group G and a semigroup S of

endomorphisms of G such that N = M¢(G).
Proof. For each a € N the map B,: N — N defined by B,(x) = xa Vx € N is an

endomorphism of (N,+). Then, for S = (B, | a € N}, one finds N = Mc(N).

Therefore, since Mg(G) is as general as possible, in order to obtain specific structural
results, one must put some restrictions on the pair (G,S). In the next section we indicate

structural results for certain choices of (G,S).

II. Structure of the centralizer near-ring Mg(G)

When S is a group of automorphisms of G one can make use of the theory of groups
acting on sets. This situation has received a great deal of attention. Hence we first consider
(G,A) where A is group of automorphisms of G with zero adjoined.

Recall that in this situation, for each a € G, we have a subgroup st(a) := {ac e Al
o(a)=2}, the A-stabilizer of a. Also for a € G, the orbit Aa of a is defined by Aa := {a(a) |
o € A). The next result, due to G. Betsch and known as Betsch's Lemma is fundamental
to the study of M (G).

Lemma II.1, Let A be a group of automorphisms of the group G and let x,y € G. There
exists a function f € M ,(G) such that f(x) = y if and only if st(x) C st(y).

When G is finite several definitive structural results can be given.

Theorem 11,2, [10] Let G be a finite group and A an automorphism group of G.
1. The following are equivalent:
a) M,(G) 1s a near-field,;
b) A acts transitively on G* =G - {0});
c) G*is a single orbit under the action of A on G.
2. M4(G) is a simple near-ring if and only if all A-stabilizers of non-zero elements of G

are A-conjugate, i.e., for a,b € G* there exists Y€ A such that st(a) = v st(b)y 1.
3. M,(G) is 2-semisimple if and only if all A-stabilizers of elements in G* are maximal,

i.e., for a,b € G¥*, st(a) < st(b) implies st(a) = st(b).

In particular, if A is a group of fixed point free automorphisms (only the identity of A
has more than one fixed point) then st(a) = {id) for each a € G* so in this case M, (G) is
simple.

Much more is known. When G is finite and M (G) is not 2-semisimple the J; radical

has been characterized and the structure of M, (G)/y, M, (G)) determined ([10)).
]




We now consider the case in which G is an infinite group. Recall that a near-ring N is
regular if for every a € N, a = aba for some b € N. In [15], Meldrum and Oswald obtain a
very nice characterization for regular centralizer near-rings.

Theorem 11,3, [15] Let A be a group of automorphisms of a group G. The near-ring
M, (G) is regular if and only if for a,b € G¥*, st(a) C st(b) implies st(a) = st(b).

We remark that in the finite case regularity coincides with 2-semisimple. Further, if A
is fixed point free then M, (G) is regular. If the pair (G,A) satisfies the condition of

Theorem II.3 then we say (G.A) is regular.

When G is infinite, it seems to be a rather difficult problem to determine in general
whether or not M, (G) is a simple near-ring. If A = {0, id} (recall the groups of
automorphisms have zero adjoined) then it is a classical result of Berman and Silverman
(see [14] or [17]) that My(G) is a simple near-ring. The investigation of the general
situation was initiated by Meldrum and Oswald [15] and continued in [16] and [2]. When
dealing with regular pairs, Meldrum and Zeller {16] showed that it suffices to restnct A to

be fixed point free. They prove the following result

A
Theorem 11, 4, [16] If (G,®) 1s regular and the stabilizers in A form a single conjugacy
class then there exists a subgroup H of G and a fixed point free group of automorphisms,

B, of H such that Mg(H) = M ,(G).

Thus one focuses on fixed point free automorphism groups A. Let {wy, 1A € A) bea
complete set of A-orbit representatives in G and define forv e G,
A,={Ae AlAw; +vZ Awy .

Lemma TI1.5, [16] Let A be fixed point free on G. If there exists v € G¥* such that IA,l =
IAl, then M 4(G) 1s a simple near-ring.

Using this result Meldrum and Zeller then prove

Theorem I1.6, [16] If A isfixed point free on G and IAl < |Gl then M, (G) 1s a simple near-
Ting.

Given a function f € M,(G), define the rank of f, rk(f), to be the cardinality of the set
of A-orbits in the range of f. For a nonempty subset B of G, define the rank of B, rk(B), to

be the cardinality of the set of A-orbits in G which intersect B nontrivially. For each

cardinal N, define Ry = {f € M4(G) | k() < N, ). It was proven by Meldrum and
Zeller [16] that these sets R, are the only candidates for ideals in M, (G).
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Theorem J1.7, [16] Let A be fixed point free on G, If  is an ideal of M (G) then I = R for

some ordinal .
This result was recendy improved.

Theorem J1.8. [2] Let A be fixed point free on G. Then MA(G) has at most one nontrivial
ideal 1. Specifically, I = {f € M, (G) | rk(f) < {Al} is the only possible nontmvial 1deal of
M, (G).

In [2] several condidons on the pair (G,A) are given which force M, (G) to be a simple
near-ring. Moreover it is shown that if a nonsimple near-ring M4 (G) exists then A and G
have rather unusual propertes. But that is where the matter now stands. It remains an open

question 1If M, (G) 1s simple.
Question; If A is fixed point free on G, is M 4(G) a simple near-ring?

We leave the case of automorphisms and return to the situation in which S is a monoid
of endomorphisms with zero. We discuss a particular situation.

Defiridon IT.8. [12] A semigroup S of endomorphisms of a group G 1s fixed point fre g if

(2) ms Kera = {0};

A =
(b) ¥Be S,KerPB=Kerp2=...
(c) Va,p e S, Vae G, if xa=Pa#0 thena =0,

It is clear that if S is a group of automorphisms then this concept agrees with the
previous use of fixed point free.

Theorem I1,10. [12] Let N be a finite near-ring. Then N is 2-semisimple near-ring with 1ts
simple summands being non-rings or fields if and only if N = M(G) for some finite group
G and S a semigroup of fixed point free endomorphisms of G.

If S is a fixed point free semigroup of endomorphisms of a finite group G then S 1s a
completely regular inverse semigroup, [12]. Thus the previous theorem suggests a study of
near-rings of the form Mq(G) where S is a completely regular inverse semigroup. In [12] it
was determined for finite groups when such a near-ring is 2-semisimple. There are also
other isolated results on the structure of Mg(G) when S has certain properties (see e.g.,
[7]). However much more work needs to be done in this area.

We mentioned above that Mc(G) 1s indeed general. However, one has been able to
characterize those pairs (G,S) such that Mg(G) is a near-field. Not surprisingly, the
discussion breaks into the cases in which S 1s a group and when it 1s not.

11



Theorem I1L11, [6] Let A be a group of automorphisms of a group G. The following are
equivalent:

(1) M,(G)1s a near-field;

(i) G = {0} u Ax and (G,A) 1s regular;

(i1) G = {0} w Ax and (G,A) sausfies the property (F.C.): If st(x) € st(ax), xe G,

ae A, then st(x) = st(ax).

When G is finite, (F.C.) is always sausfied so we obtain Theorem 11.2, (1). Moreover,
if the action of A on G is fixed point free then regulanty is equivalent to (F.C.) and in this

case both conditions hold trivially.

Corollary JT.12, [6] If A is a group of fixed point free automorphisms of G then M (G) is
a near-field if and only if G = {0} U Ax.

We mention here that we know of no example of a group G and a group A of
automorphisms of G such that G = (0} W Ax but (G,S) does not saasfy (F.C.).

Now let S be a semigroup of endomorphisms of G as usual with zero and identity. For

any x € G, x € Sx so we have G = U Sy;. Wecall Y = {y.l1e I} a generating sel.
1€ ]

Henceforth we take Y = {y; | 1 € I} as an arbitrary but fixed generating set and we consider
I well ordered by the relation "<". Hence we consider Y «s an I-sequence {y;}.

For u,v € G define the relation F(u,v) := {(a,B) € SxS | au = [v}. Further let H =
(I-sequences (x;} | x; € G, F(yi,y_i) - F{xi,xj),i < j}. If =, is the i-th projection map then
clearly m;(H) ¢ G. We define another relation R on G* by (Xx,y) € R if there exists ae S

such that a(x) = y. Let R denote the equivalence relation generated by R. We call the

equivalence classes of R the connected components of G and we say G is S-connected
provided G* 1s a connected component.
Equivantdy u,v € G* are S-connected if and only 1f there exist Xy,X,...,X, ; € G¥,

Gy 300,P15--Pp € S such that
gu=p;x;#0
OyXy = Pgxy # 0

ann_l = pn‘\-’ x O

We now introduce a concept needed in the next theorem but also used very much in the

following section.

Definition I1,13, Let G be a group and F = {G,) a collection of subgroups of G such that
) 10) GGG
(i) WG, =G;

12



(i) Go NGy = {0} if a = P.
Then Fis called a fibration of G and (G, 7) 1s called a fibered group.
If F={G,) is a fibration of G, we say ¢ € S is a F-isomorphism if for each G, € %,

6(Gy) = {0) or Ker 6 M G, = (0} and 6(Gy) = Gy for some Gge F. Thusc € Sisa -
isomorphism if and only if for cach G, € ¥, ¢ is the zero map on G, or O is an

isomorphism on G, with image in f. The charactenzauon result is as follows.

Theorem I1,14, [6] Let S be a semigroup of endomorphisms of a group G. Then M¢(G) 1s

a near-field if and only if
(1) G s S-connected,
(1) G has a fibration, say ¥ = {Hj ljeJ} and each g € S is an F-isomorphism,

ITI. Geometry and Near-rings

From the time of Descartes, early in the 17th century , mathematicians have been
interested in associating algebraic structures with geometric stuctures and investigated the
transfer of information. In this section we introduce a geometric structure, associate two
near-rings to tne geometry and indicate how the geometry influences the algebra. We start

with a definition due to André, [1].

Defininon ITT1, [1] Let X = (%, L, ) where P 1s a set of points, L a collecton of subsets

of P called lines, with the incidence relation "belongs to", and a parallelism relation J |

defined on L such that
(Al) Every two points in Pdetermine a unique line;

(A2) 1422 andforeach A e L, IAl22;
(A3) Parallelism is an equivalence relation;
(Ad) Vxe P VA € L, there exists a unique B e Lsuchthatxe Band B Il A,

Further there exists a one-one map ®: P — Coll £ such that ®(P) is a point transitive
group of fixed point free collineations. We say (Z,®) is a translation structure. (See [1]
and [4].)

Let (G,F = {G;)}) be a fibered group (see Definition I1.13). By taking AG) = G, L(G)
= {x + G;1G;e F, xe G} and setting a + G; |1 b + G; if and only if i=j one gets an
incidence structure (G) = (KG), L(G), I 1) sausfying (Al) - (A4). Further define ®(G) :
P(G) — Coll £ (G) by ®(G) : a — A, where A, denotes the left translation of G
determined by a € G. We then find we have a translation structure (2(G), @(G)).

Conversely, every translation structure arises in this manner. That is, if (Z,), £ =
(P,L,) 1) is a translation structure, then there is a fibered group (G,F) such that P = HG),
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L= L(G), I lis as defined above and @ = ®(G). Hence a translation structure may be
considered as a fibered group and we henceforth do so.
If the translation structure (G,7F = {G;]}) has the property that G; + GJ- = G for each

GG, € F, 1=j then Fis called a congruence fibration and in this case one obtains the
classical manslation planes.

Thus congruence fibrations tighten the structure of the geometry. We next tighten the
structure in an altermanve fashion. Let (G,7 = {(G;]) be a ranslabon structure and let S be a
emigroup of endomorphisms of G such that

(01) The identity map and zero map are in S;

(02) Foreach o € S, for each G; € 7, 3C; € 7 such that 6(G;) C G;.
Then S is called a semigroup of operators for (G,%) and (G,%,S) is a franslation stucture
with operators, TSO. We menton that operators can also be defined in a geometric

manner, ([4]).

We now show how to associate near-rings with TSO's, (G,%,S). First we consider the
set Dil(G,F) = {c € End G 1 a(G,) ¢ G;, VG; € F}. (Note that the operators play no role
here.) Under function composition Dil(G, F) is a semigroup with zero and identity, called
the semigroup of dilitations of (G,%,S). Our first near-ring is d.g. Dil(G, F) called the
kermel of (G, F.S). For our second associated near-ring we take Mc(G,7F) = {f e My(G) |
(G ¢ G, VG, e F, fo=0f Vo € S}, a near-ring under funuon addition and

composition called the centralizer of (G, F.S).
We restrict now to the case in which G is a finite group and look at various properties

of these associated near-rings.

ITI.LA: Kemel of (G, F,S).
The structure of DU(G, F) 1s well-known, ([3], [9]).

Theorem ITI.2, For a finite fibered group (G, %), Dil(G,F)N[0) is a cyclic group of fixed
point free automorphisms of G.

Proof. To illustrate some of the ideas we show that each 0 # ¢ € Dil(G,J) 1s a
monomorphism. Hence, since G 1s finite ¢ is an automorphism. Su'ppcrsc: o € Dil(G,F)
and o(x) = 0 for some x € G, say x € G;. Lety € Gj, j#1. Then x+y € Gy, i#k#], Now
o(y) € GJ- and o(y) = o(x+y) € G,. Hence 6(y) = 0. For any w € G, use w and y to get
g(w) = 0. Thus o is the zero map.

A classical result states that when F is a congruence fibration, G is an abelian group,
therefore Dil(G,¥) is a finite field. Thus when G is an abelian group dg Dil(G,%) =
Dil(G,F) 1s a field We now turn to the non-abelian case.
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Theorem IIL3, [3] If (G,7) is a finite fibered group with Dil(G,F) # (0,id) then G is a p-
group for some prime p, 1s of exponent p and of nilpotency class at most 2.

Using this result and the known structure of Dil(G, ) the following rather surprising
result has been obtained.

Theorem 114, (9] If (G,7F) 1s a finite fibered group then dg Dil(G,F) is a commutative
ring. If further, Dil(G,7) # {0,id} then dg Dil{(G,7) is a field.

Clearly if Dil(G,¥) = (0,id} then dg Dil(G,F) = Z, where n is the exponent of G. The
above theorem shows that whether or not G i1s abelian, whenever Dil(G, F) # {0,1d) there

1s a field associated with the geometry (G,F) 1s a natural manner. We also mention that in
the abelian case the field has geometnic significance. The significance of the field

dg DU(G, F) in the non abelian case is still unknown.

I11.B, Centralizer of (G, #,S).

As above, to obtain definitive structural results one places some restrictions on the
semigroup of operators. One first considers the case where S is a group of automorphisms
(with 0). As one might expect from the previous discussion on centralizer near-rings, the
orbits of the action and the stabilizers play an imporant role. For results in this situaton
see (8],

Next one considers the situation in which S is a cyclic semigroup, say S = <> U
(0,1d}. We write M (G, F) for Mc(G,F). We are mainly interested as to when M (G, F) is
a simple near-ring. If o 1s an automorphism, using the results in [8], one notes when

My (G, F) 1s simple. In other cases we have the following.

Theorem II1.5, [8] If S = <a> u [0,ad}, o no: invertible and & not nilpotent, then
M, (G, ) is not a simple near-ring.

Proof. Since & 1s not invertible, Ker a # {0}. Thus there is some fiber, G;, of the fibration
such that G, m Ker « % {0}, For f € My(G, %), f Kera N G;)) c Kera nG;so A =
({0}): Ker aa » G)) is an ideal in M (G, F). Using the fact that a is not nilpotent one gets A
# (0}, hence M (G, %) 1s not simple.

We henceforth restrict our attention to nilpotent endomorphisms. We recall the concepts
of generating set and connected components as discussed after Corollary 11.12.

Lemma [11.6, There are k-1 connected compcnents of G* where [Ker al = k.
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Proof. Let C; be a connected component and let y € C,. Since o is nilpotent there exists
some s such that a*(y) € Ker a and since a®(y) € C;, a*(y) € Ker a n C,. Thus there
exists a kernel element in each connected component. Suppose x;,x, € Kera m C,. We
then find x; = aX(x,) for some integer k 2 0. If k#0, x; = 0, a conmadiction. Thus each

connected component has a unique kernel element.

If we let (O] be a connectec component then we say the number of connected

components 1s the cardinality of Ker . In parucular (G,7F) is S-connected if and only if

Kera = (0,&].
X

Suppose M,(G,7) is a simple near-ring. We know there is some fiber G; such that

Keran G; = {0). If Ker a N G; # {0}, i#] then one finds there exists a component with
more than one kemnel element which contradicts the above lemma. This gives the following

result,

Lemma IT1.7, If My (G, ) is simple and o is nilpotent then Ker o is contained in a single
fiber of #, say Gy.

Lemma JII.8, If M (G, %) is a simple near-ring and & 1s niipotent there is a unique

generating set Y = G\ Ker an! where " = (0 but an-1 2 0.
When G 1s S—connected much can be said.

Theorem IIT.9, [8] Let @ be a nilpotent operator on (G,F) and let G be S-connected, S =
<a> U {0,id} with Ker @ < G,. Let Y be any generating set for G, The tollowing are
equivalent.

i) YNGy=0;

(1) MG, F) is a near-field;

(1) MG(G,F) is a simple near-ring;

(1v) Mg(G,F) is a 2-semisimple near-ring;

(v) MG, F) =2Z,.

When G 1s not S-connected necessary and sufficient conditions, in terms of ihe
geometry, are known for M_(G,F) to be simple, [8]. Instead of stating these we give an

external characterization.

Theorem I11,10, [8] Let o be a nilpotent operator on (G, 7). Then M, (G, %) is a simple
near-ring if and only if M (G, %) = Mp(Ker o).

In [8] an example is given where G := (F)®, F a finite field F a fibraton of Gand a. a
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nilpotent operator such that My(G,F) = Mp(F © F). Thus simple near-rings, not rings,

actually anse.

IV. Rings and Near-rings

Let R be a nng with identity and let G be a (rnight) unitary R-module. Then R
determines a semigroup of endomorphisms of G so we have a centralizer near-ring Mg (G)

= {f e Mp(QG) | f(xr) = (fx)r, Vx € G, Vr € R}. In this section we discuss some of the
interplay between the properties of the ring R, the R-module, Gy, and the near-ring

Mg (G).

We recall that a cover for an R-module G is a collection C= {G, ]} of submodules of G

sucht that
W (0)5G6.<G;

(1) Gu‘% Gﬁfﬂ‘f{liﬁ;
(i) U Gy =G.

Let R :=Z and G :=Z? and let Cbe a cover by maximal cyclic submodules. Further let

C

1. . .

]. Since G, 1s a maximal
X2 y, Ca

submodule we have gcd(x;,x7) =1 so 3hk € Z, hx, + kx, = 1. But then f can be

+ X xz_w
f € Mz(Z?) be determined on G = Zbyf|| J -
2

cyh ¢k

represented on G, by the matrix { } 1.e., t/G, can be extended to an

Cohh ¢k
endomorphism of G. Equivalently, every f € Mz(Z?) is piecewise an endomorphism of Z?

in the sense that for each G, € C 3¢ € End,(Z%) with f/G, = ¢-

In general, let C= {G,} be a cover of G by maximal cyclic submodules of G and let
N := {f € Mgr(G) I'f/G_ can be extended to an endomorphism of G}, a subnear-ring of

Mg (G) which we call the near-ring of piecewise endomorphisms determined by (R,G, ().
We ask, "When 1s N = Mr(G)?". The next example shows that in general, N # Mg (G).

Example IV.1, [5] Let R :=Z[x], G := R2 and let C be a cover by maximal cyclic

X

x+2:l R € (. Further, 3f € Mgz(G) with

submodules. One verifies that [

17



[SJ, otherwise,

X !
However, there 1s no @ € Endg(G) with @ ’:x+2] - [1] Hence N # Mz (G).

Note that in the above example R is not a PID. For PID’s the situation 1s quite
different. In fact we have the next rather interesting result.

Theorem IV.2. [5] Let G be a finitely generated module over a PID, D, let C= {G,} be a
cover by maximal cyclic submodules and let N = {f € Mp(G) 1{/G_ can be extended to an

endomorphism of G}. Then N = Mp(G).

We mention that it is an open question whether or not the requirement that G be finitely

generated can be omitted.
In the next theorem we present some further relauonships berween the nng module Gy

and the near-ring Mp(G).

Theorem TV.3, [13] (a) If D is an integral domain, not necessarily commutative then
Mp(D?) is a near-ring, not a ring.
(b) Let R be a commutatve ring. MR(R2) 1s a sirmple near-ring if and only if R 1s an integral

domain.
(c) Let R be a left Artnian ring. Then Mg (R?) is 2-semisimple if and only if R is

sernisimple.

It should be pointed out that rings do arise as My(G). In fact if D is a commutative

integral domain andiQ(D) its field of fractions, then Mp(Q(D)) is a ring. Further, if R is a
complete nxn matrix ring over a ring S then for each R-module, G, Mg(G) is a ring, in fact

Mg (G) = Endg (G).

On the other hand if R is the field of real numbers, for G ;= R, Mz(R) 1s a ning while
for G := R?, Mg(R?) is not a ring.

This raises the questions:
(Q1): Which rings R have the property that My(G) is & ring for each R-module G ?
(Q2): Which rings R have the property that Mp(G) = Endg (G) ?

For finite rings R the above questions have been shown to be equivalent and those
rings R such that Mg(Q) is a ring for each R-module have been characterized, (see [11]).

However the general problem remains open.
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