CHAPTER 2

HEAT EQUATIONS IN HILBERT
SPACES

In this chapter, H is a separable Hilbert space and (e, ),en is an orthonormal
basis of H.

For ¢ € C,(H), the space of continuous and bounded functions ¢ : H — R,
we say that ¢ is differentiable in the direction ey, k € N, if the limit

1
Dyp(z) = Jim - (o(x + heg) —o(z)) , reH

exists in Cy(H ). The operator Dj, will be considered as the linear operator
in Cy(H) defined by

D(Dy) := {<p € Cy(H) : ’llim % (p(- + heg) — (+)) exists in Cb(H)}

—0

and

1
Dig(a) = lim = (p(a + hew) = ¢(2)), 9 € D(Dy), v € H, heR.

We start by showing that Dy, is a closed operator on C,,(H), for every k € N.
In fact, let (¢p)nen € D(Dy), and p,¢ € Cy(H) such that

Pn — @ and Dkgﬁn — 'LZJ in Cb(H)
We consider ¢,,, ¢ € C(C[-1,1],Cy(H)) defined by
o(h)(z) := o(x + hex) and ¢, (h)(x) = on(z + heg),

x€ H, he[-1,1]andn € N.
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Then ¢,, is differentiable, as a function of the variable h, and

- 0u(h)(x) = Dicg (i + hes).

So we have

h
6ull) = 60(0) = [ (s)ds

0

and by the assumption we obtain

h
o(h) — B(0) = / B+ sex) ds,

which implies that ¢ € D(Dy) and Do = 9.

In a similar way we can define partial derivatives of any order.

Now, we fix a sequence (A, )nen, An > 0 for n € N. In this chapter we are
interested to solve the heat equation

(HE) %u(t,m) = %Zzo:l A D2u(t,z), t>0, x € H,
U(OaI)ZQO(J?)v $6H7 @ecb(H)

and to study the regularity of the solution u of (H F') in the case dim H = co.
For this purpose, let consider its finite dimensional approximation

(HE) %u(t’x) = %Z;;l )‘kDI%u(tvm)a t>0, z€H,
" w(0,z) = (), x€eH, o€ Cpy(H).

It is easy to see that, for all ¢ € Cy(H), (HE), has a unique classical
solution given by

1 n &R
Un(t, ) = (278) "3 Ay . An) "% [ € 2521 20 o(z — Y ) dE,
ift>0
un(0,2) = p(z), z€H.

If we denote by
T =< z,ep >, x € H

and
MO - 0

0 - A\,
then

un(tmc):/ go(y+ Z xkek> N(z,tB,)(dy), =€ H, t>0.

k=n+1
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In the sequel we denote by
P () = un(t, z)
fort > 0, z € H, n € N, and ¢ € Cy(H). By an easy computation one

has, for alln € N, (Pt(n))tzo is a semigroup on Cy(H). Moreover, on Cy,(H),

(Pt(")) is not strongly continuous at 0. In order to have strong continuity at
0 we have to work, for example, in BUC(H), the space of all bounded and
uniformly continuous functions from H into R. Now, it is well-known that

(Pt(")) is an analytic semigroup on BUC(H) and
12 ¢lloo <l

for p € BUC(H), t > 0,and n € N.
Now, one asks under which conditions the limit

lim w,(t,2) existsin BUC(H)

n—oo

forall ¢ € BUC(H)?
A necessary condition for the existence of the above limit is

o0
Z A < 00.
n=1

In fact, let (z) :=exp(—3||z||*). By applying Proposition 1.2.8 with

a= -1, m =z, and B = tB,, one has
n ln 22 1 0
St ) =TT+ t)~ 2 - ko Z 2

If lim,, o0 up (¢, =) exists, then []p (1 + t\s) "2 exists for ¢ > 0. Hence,

log [T(1+tAk) =D log(1+tAs), >0
k=1 k=1
exists. In particular, limy_, o, Ay, = 0. Set M := sup,, A,,. Then we have

mtdp <log(l+tXg) <tAg, t >0, k€N,

where m := inf{1log(1 + @), 0 < o < M}. Therefore,

(oo}
Z/\k < o0
k=1

and

2

oo
lim u, (¢, ) = u(t,x) =H (14 Agt)™ 6_%2’“11*’%, t>0,ze€H.
n—oo

k=1
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If Y72 | Ak = oo, then

lim w,(t,z) =

n—oo

0 ifz=0,t+£0
1 ifz=0,t=0.

Hence, u,, does not converge to a continuous function.

Now, in the sequel we assume that 2120:1 A < oo Set
Bz =72 Ay, * € H. Then B € L (H), ker B = {0}, and Equation
(HE) can be written as follows:

Su(t,z) = $Tx[BD?u(t,x)], t>0, z € M,

(HE) { u(0,2) = ¢(x), x € H,

where ¢ € BUC(H).
Many results of this chapter can be found in the monographs [12] and
[13].

2.1 CONSTRUCTION OF THE HEAT SEMIGROUP

In this section we are concerned with the construction of the solution of
Equation (HE). To this purpose we suppose without loss of generality that
Ay > 0 forall k € Nand Y 72, Ay < oco. The semigroup (Pt(")) can be
written as

n
P = [[7:()e, t>0, ¢ cBUCH),
k=1
where
s2
Te(H)p(a) == (27tA) "2 Jpe ko(x—sep)ds ift>0
o(x), ift=0

for x € H and ¢ € BUC(H). Note that Tj(-) is a Cp-semigroup of con-
tractions on BUC(H) for k € N. Before proving the strong convergence of
P t >0, on BUC(H), we recall some definitions and fix some notations.

We denote by BUC'(H) the subspace of BUC(H) of all functions ¢ :
H — R which are Fréchet differentiable on H and the Fréchet derivative
Dy : H — H is uniformly continuous and bounded. For ¢ € BUC'(H) we
set

lellr = llelloc + sup [[De(z)].
rEH

In the sequel we need the subspace BUC!(H) of BUC!(H) consisting of
all functions p € BUC*(H) such that Dy : H — H is Lipschitz continuous
and, for o € BUCY(H), we set

D -D
lollis = llolh +  sup 1D (z) — Do)l
zyEH 2y lz —yll
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Theorem 2.1.1 For all ¢ € BUC(H), the limit
Pip:= lim Py

exists in BUC(H), uniformly in t on bounded subsets of R™. Moreover (P;) is
a Cy-semigroup on BUC(H) and

[1Pepllos < lleelloo
fort>0and ¢ € BUC(H).
Proof: Let compute first
n n—1
Pro—P o = [[Teme— [] )¢
k=1 k=1
n—1

and hence,
1P = P lloe < I Tn(t)¢ = ¢llos, ¢ >0, ¢ € BUC(H), n €N,

So, for ¢ € BUCY!(H), we have

(To®)p—¢) (@) = (2mAnt)" / e~ (p(z — sen) — p(z) ds

1
(27 AL t) 7%/6 2Mf/ —gcp(x—s(l—v)en)d’yds
R o Oy

1
—(27A, t)_% /Re e / < Dp(x—s(1—7)en),
0
sen > dyds.

Since,
52 52
/e_m < Dy(x), sen, > ds =< Dy(x), e, > / e Batsds =0,
R R
it follows that
T, (ple)=o@) = —ma,t) [ oo / < Dp(a—s(1-y)e.)~Diplx),

sen > dryds.
Thus,

S2
T (t)p(a) — p(@)] < @arat)2lplli [ 2™ Bnids = Antl|]1,1-
R
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Hence,
[T (t)e = ¢lloc < Antllellr

fort >0, ¢ € BUCY'(H), and n € N. Therefore,

1P/ = Polloo
n-+p n+p—1 n+1 n+1

< I 70e = TI Te®eloo+---+ 1 TT Tt = [T Tu(®)lloo
k=1 k=1 k=1 k=1
< NTarp (O = @lloo + -+ + [[Tnga ()9 = Plloo
n+p
< el Y A mpeN.
k=n-+1

Since >~ 7, A\, < oo, it follows that (P/"¢), is a Cauchy sequence in
BUC(H), uniformly for ¢ in bounded subsets of R.. Thus, the limit exists
in BUC(H) forall p € BUCY'(H). Since BUC™!(H) is dense in BUC(H)
(see [28] or [23]) and || P"|| < 1 for alln € N and ¢ > 0, the limit exists for
all ¢ € BUC(H) and will be denoted by

Pip:= lim Py, t>0, p € BUC(H).

The family (P,;);>¢ satisfies P,y = PPy, Pyp = ¢ for all ¢,s > 0. This
follows from the estimates || P*|| < 1 and the fact that (P") is a semigroup
on BUC(H). The strong continuity of (P;);>¢ follows from the uniform
convergence of P* on bounded subsets of R, and the strong continuity of
(P")>0 for every n € N. O

Remark 2.1.2 An other proof of Theorem 2.1.1, using the Mittag-Leffler the-
orem, can be found in [2]. In this work the authors find conditions implying
the convergence of the infinite product of commuting Cy-semigroups.

Let show now that the semigroup (P;):>¢ is given by a Gaussian measure.

Theorem 2.1.3 If we denote by p := N (z,¢B) the Gaussian measure with
means x € H and covariance operator tB, then

(Pig)(z) = / ()N (z, tB)(dy)

H

for p € BUC(H), and t > 0, where B = diag(A1,..., A\n,...).

Proof: Forn € N, ¢ € BUC(H), t > 0, and z € B=(H), it follows from
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the Cameron-Martin formula (see Corollary 1.3.5) that

n

/ng <Z Yrer + Z zkek) N (z,tB)(dy)

k=1 k=n-+1

// (Zykek+ > :Lkek>~

k=n+1

1 1, 1 _1
exp <——|B 2x|2 t(any,an’@) N(0,tB,,)(dy)

2t

/ (Zykek+ > xkek>

k=n-+1

exp( 21(|B z? - |Bnéx|2>)N(m,tBn)(dy)

exp (=i 1BEaf - B2 ) ) (Pre) o).
So it follows from Theorem 2.1.1 that

i (779) (exp (5524l = 8, 1a)) = (Pop) (o).

n—oo

So by the dominated convergence theorem and Lemma 1.2.7 we obtain
(Pio)@) = [ eV a.tB))
= /H oy + )N (0,tB)(dy), «e B3(H).
Since % = H (see Remark 1.3.2), it follows that

(Pg)(2) = /H oy + DN (0, tB)(dy), =€ H,

and the theorem follows now from Lemma 1.2.7. O

2.2 REGULARITY OF THE HEAT SEMIGROUP

Let prove first the differentiability of P, in any direction ey, k € N, for
t>0and ¢ € BUC(H).

Proposition 2.2.1 Let ¢ € BUC(H) and t > 0. Then Py € D(Dy,) for all
k € Nand

DiPrpla) = / vk + YN0, 1B)(dy),  x e H.

it
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Proof: By the Cameron-Martin formula (see Corollary 1.3.5) we know that
1 1 5 1 1 1
Pip(z) = [ p(y)exp *z—t\B 2x| + T <B7Fy.B7re> N(0,tB)(dy)
H

fort >0, x € H and ¢ € BUC(H).
It is now easy to see that Py is differentiable in the direction e; and by
Lemma 1.2.7 we obtain

1

DpPp(x) = W H(yk—xk)ap(y)N(x,tB)(dy)
= o [ mele+ N, B) ).
kJH

|

By applying the Cameron-Martin formula to the derivatives Dy P;p ob-
tained in Proposition 2.2.1 one obtains by similar arguments the following
result.

Proposition 2.2.2 For ¢ € BUC(H) and t > 0 we have Pyp € D(D,Dy,) for
alll, k € N, and

1 01 &
DDy Pyp(x) = m/ yiyre(x +y)N(0,tB)(dy) — —)f]; Pipo(z), =€ H,
Aet? g !
1 ifl=k
where 0 ), 1= { 0 ;f | £ k’

Now, we are interested in global regularity properties of the semigroup (P)
on BUC(H). To this purpose we define two subspaces BUC(H) and
BUC%(H) of BUC(H).

Definition 2.2.3 We said that a function p € BUC(H) is in BUCL(H) if
M) ¢ € MZy D(Dw);
(i) supyep Yopey Al Drp()]? < o005

(iii) the mapping Dpy : H — H; x — Y ;- V/AeDip(x)ey, is uniformly
continuous.

It is clear that BUC'(H) C BUCL(H) and Dpy(z) = B2 Dy(z) for z € H,
and ¢ € BUC(H).

Definition 2.2.4 A function ¢ € BUC(H) is in BUC%(H) if
6] (NS mlo,cl;:l D(Dle);

(i) sup,ep 300, (300, VA D Dyo(a)yr)® < C2ly[? for all y € H and
some constant C' > 0;



2.2 Regularity of the heat semigroup 33

(iii) the mapping D% defined by D4p(z) : H — L(H); x — D%p(z),
where

(DEep(x Z VAADDrp()yize,  y,z € H,
Lk=1
is uniformly continuous.
We propose now to show some auxiliary results.

Lemma 2.2.5 The linear operator
p: BUCL(H) — BUC(H, H)
is closed.

Proof: Let (p,) C BUCL(H), ¢ € BUC(H), and F € BUC(H, H) are
such that

lim ¢, —¢llec =0, and lim |[Dpy — F|prcm m = 0.
n—oo n—oo
For any k € N, we have

lim sup (Dpyn(z) — F(x),ex)| =

n—=0 reH

= lim sup ’\/ngcpn(w) - <F(x),ek)‘ =0.

Thus,

1
lim sup |Dro(x) — —(F(x),e
i sup | Diplo) - = (Flo).r)

Since Dy, is closed in BUC(H), it follows that ¢ € D(Dy,) and

=0.

1
D = —(F(x),er), keN.
k@(x) \/)\_k:< (I) €k>
Hence,
S MlDp(@)? = Y [(F(a),e
k=1 k=1
= [F(@)]* < |F|%.
Moreover,
Z VADip(x)er, =Y (F(x), ex)e = F(x)
k=1 k=1

is uniformly continuous. Therefore, p € BUCK(H) and Dy = F. O
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Lemma 2.2.6 For ¢ € (\5_, D(D;Dy,) and = € H, we define D}, ¢(x) by

<DB (p( Z \/ )\l)\leDkQO le, y,z € H.

Lk=1
Assume that

(i) there is a constant ¢ > 0 such that

(D%, o(2)y, 2)| < clyllz], Va,y,z€ H,neN;

(ii) for all y,z € H, the limit

lim (D} ¢(z)y, z) exists uniformly in « € H.

Then, ¢ € BUC%(H) and
lim sup ’(D%nga(x) z) — (D% z)| =0, y,z€H.

Proof: From the assumptions we have
6] (NS mlojgzl D(Dle);

(D) sup,ep [Yimt (Crer VANDIDrp(x)yr) 1| < cly|lz| for all n € N
and y, z € H. Thus,

2
sup (Z VAN AD Dyp(x > <Ay, vneN

zeHl 1

(iii) Since the limit lim, .o (D} ¢(z)y, z) exists uniformly in = € H, for
all y, z € H, it follows that the mapping

D%o: H — L(H); v — Dgp(x)
is uniformly continuous.
Thus, ¢ € BUC%(H). The last assertion follows easily from the definition
of DE . O
We are now able to show global regularity results for the heat semigroup
(Py).
Theorem 2.2.7 Let ¢ € BUC(H) and t > 0. Then P,p € BUCK(H) and

(DoPie(@).2) = 1 [ (B bela + )N O.B) ). a2 € I,

Moreover,

[DpPrp(a)|| < Vz € H.

Ll
\/i@ooy
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Proof: By Proposition 2.2.1 we have, P, € D(Dy,) for all k € N, and

n

; VA Dy Prp() 2y = ; ﬁ /H yrzwe(z + y)N(0,tB)(dy).

So by the Holder inequality we obtain

n 2
S VADrPp(a)an| < H( W’“) (0,B)(dy)
=1
\@Hz - 212k
119N (0, tB)(dy
; o o ( )(dy)
H‘pt! / y2N(0,B)(dy)
k:l
B H@\ n
= ykN (0, t k) (dyr)
2 n
_ H@l\oo 2.
k=1

Hence,

- 2 llells
> MlDiPip(@)? < Z%, WneN.
k=1

It remains to prove that the mapping
o0
DBPt(p M d Z vV )\kaPth(Jf)ek
k=1
is uniformly continuous. First, we note that, by the last estimate, the series

DpPrip(x ZJ_ Dy.Pp(

converges and we have

(DoPee(@).2) = 1 [ (2B 4hela + DN OBy, = € I,

Now, we introduce the uniform continuity modulus of ¢ € BUC(H),

wy(t) :==sup{|e(z) —¢(y)| :z,y € H, |z —y| < t}, t>0.

Since ¢ is uniformly continuous, it is easy to see that w,, is continuous in
[0,00). Let 2,y € H. By Holder’s inequality and Proposition 1.3.1, we
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obtain
(DpPip(x) — DpPp(y), 2)|*
B H / (2, B72a)(p(z + @) — ¢y + a))N(0,tB)(da)
H
z —yl|)? L
< M/H |(z, B"2a)|?N(0,tB)(d)
— MMQ_
t
Hence,

|D5Pap(z) — DpPip(y)] < %wmx 4.

Then, P,p € BUCE(H) for all ¢ € BUC(H) and ¢ > 0. Moreover, by the
same computation as above, we obtain

1
|1DpPrp(x)|| < %H%)Hoo

forall oy €« BUC(H),t>0,and z € H. O

More global regularity is given by the following theorem.
Theorem 2.2.8 For ¢ € BUC(H) and t > 0, we have P,p € BUC%(H) and

1

7 H<zl, B2y} (20, B~ 2y)p(x + y)N(0,tB)(dy)

(DR Pyp(x)21, 22)

—3(e1,22) Pipl@)

for 21,22, x € H. If in addition ¢ € BUCL(H), then

(DyPis@)an ) = 1 [ (Doela 1)) BH)NO.B)(dy)

for x, 21,29 € H. Moreover, for all x € H,
V2
t
1
IDEPip()ll ey < %”DBSO”BUC(H7H) for ¢ € BUCR(H).

DL Pip(x)|| oy < l¢lleo  for ¢ € BUC(H), 2.1

Proof: From Proposition 2.2.2 it follows that

1 _1 _1
(D%, Prpl(a)z1,20) = o) H<Z1, By 2y) (22, Bn 2 y)p(x + y)N(0,tB)(dy)

1
—;(zth)Ptg@(m)7 21,29, 0 € H.
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It is easy to see that all the assumptions of Lemma 2.2.6 are satisfied. Thus,
P,p € BUC%(H) and

(DR Pip(x)z1,22) = %2H<Z1,B‘%y><Z2,B‘%y><p(w+y)N(0,tB)(dy)

1
—;<Z1722>Pt%’($)7 21, %2,v € H.

Hence, by Holder’s inequality and Theorem 2.1.3, we obtain
(DEPep(a)z,2)|* =

5 [ 1B Pl + N0, tB) ) ~ 2 Pipta)

2

2

1
tt

lellZ 5 B a2 — 222
< B2 [ (1B bl —teR) NO.tB) ).

t4

[ (1B 2P = ) olo + )N 0,15 (dy)
H

[ Ve B RN OuB) ) = 321l and
/| PPN (0,tB)(dy) = t|z|> (see Proposition 1.3.1),

it follows that 5
(D} Prp(x)z, 2)|* < tz\d“llwllio

for all z, z € H. Consequently,

V2
IDBPrp()] oy < T||<P\|oov Vz € H.

The second equality can be obtained similarly, by using Theorem 2.2.7 and
the last estimate is a consequence of Proposition 1.3.1. O

We propose now to prove an additional regularity result, which will be
needed to solve (HE).
We start by the following auxiliary result, where the proof can be founded
in [15, Lemma X1.9.14 (a), p. 1098].

Lemma 2.2.9 Let B € L(H) and suppose that there is a constant ¢ > 0 such
that, for all finite rank linear operator N in L(H), |Tr(NB)| < ¢||N||. Then
B is a trace class operator on H and

TrB<c.
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The following result was proved first by L. Gross [19] by using proba-
bilistic methods.

Theorem 2.2.10 For ¢ € BUC'(H) and t > 0, we have D% P, (x) is a trace

class operator on H for all x € H, and

T (DyPip(o) = [ < Dolo+)y> NOB)dy) . s H

Moreover, TrD% P,p(-) € BUC(H) and
L
Vi

Proof: Since ¢ € BUC'(H), it follows that, for z; € H,

ITeD%, Pp(x)] < —= |||l (TrB)%.

< DPyp(x),Biz; > = / < Dy(z +y), B2 > N(0,tB)(dy)
H
= Pt’(/}(‘r)7
where (z) :=< Dy(z), B2z, >, « € H. From Theorem 2.2.7 we have

<DBPt1/}(1'),ZQ > = %‘/H <z2,B_%y>w(x+y)N(0,tB)(dy)

= %/H < 2,B 2y >< Dp(z+y),Bz (2.2)
> N(0,tB)(dy)
for z, € H. On the other hand, by an easy computation, one can see,
< DpPu)(x), 20 >=< DL Pip(x)21, 20 > .

Hence,

< DR Pyp(x)21, 22 > =
= L[, <Dp(x+y),Biz >< 20, B3y > N(0,tB)(dy).

Now, take N € £(H) a finite rank operator. We obtain

< ND%Pip(x)21, 22 > =
= L[, <Dy(x+y),Brz1 >< N*23, B2y > N(0,tB)(dy).

Hence,

1 1 1
TW(NDyPipla)) = ¢ [ < Do+ ), BANB by > N(0,45)(dy),
H
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and by Holder’s inequality, we obtain

wvoipe@)f < L [ Bivedpa. s
= H(pllltT(BZ’NN*B?) (see Example 1.2.9.(b))
= @T&(NN*B).

Thus,
1 1
| Tr(N D% Prp())] < —\/%IlwlllllN\I(TrB)*’, reH.

So, by Lemma 2.2.9, Tr(D% Pyp(z)) < oo for all z € H. Moreover,

(D} Pipla)) = 1 [ < Delo+ )y > NOB)dy). = € I,

and

I Te (D Prp(a)] < \[HwH (TeB)*, w e H.
The uniform continuity of Tr(D%P;¢(-)) follows from the fact that ¢ €
BUCY(H). O

2.3 SOLUTIONS OF (HE) AND CHARACTERIZATION
OF THE GENERATOR OF (F))

We denote by (G, D(G)) the generator of (P;) on BUC(H).
First, we propose to compare G with the following operator

D(Go) =

{o € BUCE(H), Dpp(x) € L1(H), ¥z € H and Tr(Dj(-)) € BUC(H)},
1 2
Gow = 5TH(D}e0),
where £, (H) denotes the set of S € £L(H) with Tr S < cc.

Proposition 2.3.1 The following hold:
(@) D(Go) = BUC(H);

(b) Go=G.
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Proof: (a) Let ¢ € BUC(H). Since BUC'(H) is dense in BUC(H), it
follows that, for any ¢ > 0 there is . € BUC'(H) such that [[¢—¢. || < 5.
On the other hand, from the strong continuity of (P;) we have, for any ¢ > 0
there exists ¢ > 0 with

e
0<t<d=|¢ec— Prpelloo < 3

Thus, for 0 < t < 4,
o — Proe| <e.

Now, (a) follows from Theorem 2.2.10.
(b) Let ¢ € D(Gy) and take ¢(t) := P,y and g, (t) : P'¢p.
It follows from Theorem 2.1.1 that

gn — g inC([0,1]; BUC(H)).

Moreover,

dgn, 1 & 1« , 1L
) 3 3o nin ()= 3 eskrro - a7 (33 aunte).
k=1 k=1 k=1

Hence,

%(” — Py(Gow) inC([0,1], BUC(H)).

Consequently, %(t) = P;(Goyp) and by taking ¢t = 0 we have ¢ € D(G) and

Gy = Gy, i.e., Gy C G. In particular Gy, is closable. Now, take ¢ € D(G),

A > 0 and set ¢ := \¢p — Gp. We know that there is (¢, )neny € BUC(H)

such that ¢, — ¢ in BUC(H). Since (F;) is a semigroup of contractions

on BUC(H), we can define ¢, := R(\, G)¢,. It is clear that ¢, — ¢ in
oo

BUC(H). Since p,, = / e~ Py, dt, it follows from Theorem 2.2.10 that
0

> 1 1
on € D(Go) and  ||Gownlleo < (/ e)‘t—dt> (TrB) 2 |91 -
0 Vi

Moreover, since
GOSDn = G‘Pn = /\R()\, G)¢n — Y,
it follows that

lim Gopn = AR\, G)) — ) = GR(\, G)tb = Gp.

This proves that Gy = G. ]
We solve now the heat equation. Let ¢ € BUC!(H) and set

u(t,x) = Pyp(x), t>0, x€ H.
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From Theorem 2.2.10 we know that P, € D(Gy) for ¢t > 0. Since Gy C G
we obtain

d
%Pt@ZGPt(p:G()Pt(p, t > 0.

Thus, we have the following result.

Theorem 2.3.2 Let ¢ € BUC'(H). Then the function
u(t,z) = Prp(x), t>0,

is a classical solution of (HE) with u(0,x) = ¢(x), x € H.

An other characterization of the generator (G, D(G)) of the heat semi-
group (P;) on BUC(H), which will play an important role in Section 2.4, is
given by the following proposition.

Proposition 2.3.3 The set

Dy(G) := {p€ BUC“'(H):D.Dyp € BUC(H),
forallk,l € N, sup ||DiDip|lcc < 00}
k,lEN

is a P;-invariant core for G. Moreover;

Gy = Z MDio  for p € Do(G).
k=1

Proof: Let show first that, for ¢ € BUCY!(H),

sup ||D[Dth<p||oo < H(p' 1,1, t> 0. (2.3)
eN

)

Let ¢ € BUCY(H) and k € N. Since Dy, is closed and Dy P*¢ = P*Dyp
for t > 0 and n € N, it follows from Theorem 2.1.1 that

DyPp = B Dy
for all t > 0. So by Proposition 2.2.1 we have
DyPip e D(D;) forallt>0, and! € N.
Thus, by Theorem 2.1.3, we deduce that

|Dy Dy Prp(z)| =
= |DiPDyp(x)|

1
Lim —(PDrp(x + he) — PLDyo(x)

lim / LDuple 4y + her) — Dgle + y)N(0,1B) dy)
H

A

< el
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foralll,k € N, and z € H. This proves (2.3). So we obtain
P,Dy(G) C Dy(G), Vt=>D0.

From Proposition A.2.5, it suffices now to prove that Dy(G) is dense in
BUC(H). This can be seen by using (2.3) and exactly the same proof as in
Proposition 2.3.1.(a). O

We end this section by the following remark.

Remark 2.3.4 If we compare the result of Theorem 2.2.8 and Theorem A.2.7
then the following question arise:

Is the semigroup (P;) analytic or at least differentiable on BUC(H)?

The answer is negative (see [27]) and will be given in the following section
(see Corollary 2.4.2).

2.4 THE SPECTRUM OF THE INFINITE
DIMENSIONAL LAPLACIAN
Let H be a separable, infinite dimensional, real Hilbert space and let (e;) be

an orthonormal basis. We shall regard BUC(R") as a subspace of BUC(H)
via the isometric embedding

Jn : BUCR") - BUC(H), (Jnp)(z):=p(z1,...,2,),

for p € BUC(R™), x € H, and zy, := (x, e). Let A\ > 0 with Y77 | Ay < o0
be given. We know from Theorem 2.1.1 that the infinite dimensional heat
equation (HE) on BUC(H) is solved by the Cy-semigroup of contractions

Pipo= lim Py, @€ BUC(H),

where the above limit exists in BUC/(H) uniformly in ¢ on bounded subsets
of [0, 00). We recall that for ¢ € BUC(H), z € Handt > 0,

Plo(z) = (27rt)7%(/\1 e /\,,L)7% / e~ Lk=1 2Ag (p(l‘ - Zykek)dy.

k=1

2.4
Let compute the spectrum of the generator (G, D(G) of the semigroup (P;)
on BUC(H).

Theorem 2.4.1 The spectrum of G is the left half plane {\ € C : Re A < 0}
and o(P;) = {\ € C: |A| < 1}. Moreover, every A € o(G) is an approximate
eigenvalue.
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Proof: Note that the restriction of P, to BUC(R™) coincides with the semi-
group generated by G,, := Y _,_, \;, D7. In particular, G,, is the part of G in
BUC(R") and, hence, R(\,Gr) = R()\, G)pucmn) for A € p(G) N p(Gyr).
Therefore, for these values of ), the sequence |R()\, G},)|| is bounded.

Let V : BUC(R™) — BUC(R™) be the isometry defined by

(Vo) (z) = w(\/gxl, e \/?:z:n), ¢ € BUC(R"), = € R™.

A simple change of variables in (2.4) shows that e!“» = V~1letAnV for
t > 0,n € N, where A,, denotes the Laplacian on R™. This implies that

R\, GR) =VIROA)V forAe X, :={0#XcC:|arg \| < 7},

so that ||[R(A, Gy)|| = [|[R(A\, Ay)| for A€ £, and n € N,
Fix A € X with Re A < 0. For n € N, the function g, ,,(z) := eﬁ‘zﬁ, T €
R™, belongs to BUC(R™) and ||gxn|lcc = 1. Setting

A2 Al
fan(@) = A= An)grn(x) — F|3’J|262/\”‘L|2, r e R",

we compute
2|\
||fA,n||oo - TL6|R€ )\| .

So we derive
HR<>\7 An)fk7n||oo _ n€|R€ )\|
[ fxmnlloo 2| A2

Since the sequence ||R(), G,,)|| is unbounded, A must belong to the spec-
trum of G. From standard spectral theory of Cjy-semigroups,
cf. [16, Chap. IV], now follows the first and second assertion.

To prove the last assertion, we observe that iR is contained in the ap-
proximate point spectrum of G. Let A = —a? + ib for a > 0 and b € R. The
first part of the proof applies to the operator G on BUC/(H)) ‘correspond-

ing to the sequence (A2, A3,---). Thus there exist g, € Do(G) such that
llgnlleoc =1 and |Ggy, — ibgp||oc — 0 as n — co. We now define

B G)ll = [R(X, An)|| =

fn(z) s expliaX; 2 x1) gn(x2, 23, ), = € H.
Clearly, f, € Do(G), || falloc =1, and

Gla(@) = 3 N D} ful@) = —a® ful@) + explia); * a1) (Gon) (22,73, - -),
k=1

r € H.
As a result, )\ is an approximate eigenvalue of G. ad

As a consequence of Theorem A.2.10 and (11) we immediately obtain
the following result from [14], see also [18], [29] and [2].



44 Heat equations in Hilbert spaces

Corollary 2.4.2 The semigroup (P;) is not eventually norm continuous an
hence not eventually differentiable on BUC(H).





