CHAPTER F

Bilateral Basic Hypergeometric Series

This chapter deals with the bilateral basic hypergeometric series. The Ra-
manujan 1ti-summation formula and Bailey’s very-well-poised gvg-series
identity will be established. We shall also investigate the non-terminating
bilateral g-analogue of Dixon’s theorem on cubic-sum of binomial coeffi-
cients, partial fraction decomposition method on basic hypergeometric series
with integral differences between numerator parameters and denominator
parameters.

F1. Definition and notation

F1.1. Definition and convergence. Let {ai};l and {bj };:1 be com-

plex numbers subject to the condition that a; # ¢™ and b; # ¢~" with
m € Nand n € Ny for all ¢ = 1,2,--- r and j = 1,2,---,s. Then the
bilateral g-hypergeometric series with variable z is defined by
q} z".
n

= n (") ST lay,ag,
Tz = —]_ 2 }
& :l Z{( )q |:blab23"'abs
n=—oo
For m € Z, we find by shifting the summation index n — m + n, that the
bilateral .1s-series satisfies relation

a1, G2, * -+, Gr
s

rws |:bla b?a T b

ay, g, -, Qr . o ai, Q2, -+, G m
e |:bla ba, <+, bs 4 Z} = |: bi, by, ---, bs CI} mZ (Fl.1a)
qmal, qma% cee qmar
X sl gmp, | gm my | 42| (FL1Db
v |:q bi, ¢™ba, -+, ¢"bs qz:| ( )
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When has no zero parameters, we can reverse the summation order and
get another equivalent expression for the bilateral ,vs-series:

q}m{%}m@m)

—+oo

" Z} -y |:q/blaq/b23"'aq/bs

ay, az, -, Qr

rws |:bla b?a ) bs

Q/al, q/a% Yy q/a”‘
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where A := ajas---a, and B := biby---bs have been defined for brevity,
and the shifted factorial with negative integer order has been inverted as
follows:

. _ (7; @)oo _ 1 _ q(n;rl)(—l/x)n n
T VT P 7 P

Splitting the bilateral series ,¢s into two infinite series:

T S—T
0] = L{eon@) g

n=0

Ay, ag, -, Qr

r’(/)s |:b17 an ) bs

qLZ"
RIS

we can check without difficulty that for |¢g| < 1 and R = !B / A!, the conver-
gence condition of the bilateral series is determined as follows:

+oo
Q/bla Q/an ) Q/bs
+ Z |:q/a17Q/a27"'7q/a’r

m=1

e if r < s, the series converges for |z| > R;

e if 7 > s, the series diverges for all z € C except for z = 0;

e if ¥ = s, which is the most important case, the series converges for
R < |z < 1.

F1.2. Ordinary bilateral hypergeometric series. Similarly, we can
define the (ordinary) bilateral hypergeometric series.

Let {ai};l and {bj}j:1 be complex numbers subject to the condition that
a; # m and b; # —n with m € Nand n € Ny forall ¢ =1,2,---,r and
j =1,2,---,s. Then the (ordinary) bilateral hypergeometric series with
variable z is defined by

—+o0
rHS a1, A2, -, Qr 2 = § a1,0a2,: -, 0ar P
b17b27"'7bs b17b27”'7bs n

n=—0oo

Only when r = s and |z| = 1, the bilateral ,H,-series is of some interest.
Writing it in the sum of two unilateral series

—+o0
a1, A2, -, Qr _ ai,az, - ,ar n
THT{bl,bQ,---,br Z} - Z{bl,b%---,br} :
n=0 n
+oo
1=b1,1=ba,---,1=b, —m
+ Z{l—al,l—ag,-~-,1—ar ~
m=1 m

we can determine the convergence condition of ,. H,.-series as follows:

e if z = 41, the series converges for |R(B — A)| > 1;
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o if z = —1, the series converges for |R(B — A)| > 0.

F1.3. Examples. Here we shall review the Jacobi triple and the quintuple
product identities derived in C2.4 and C2.6 respectively.

e The Jacobi triple product identity can be stated in terms of bi-
lateral series as follows:

+oo
ov1 [0 K 4 = Y 0¥ = [gaq/aig,. (FL3)
n=—oo
e An alternative form can be obtained by separating the sum into two
according to the parity of summation index n:
—+oo

S )ty (F1.4a)
njr;)oo 2

Z 4" {1 _ yq1+4n} y2n (F1.4b)

+oo

> q4”2{1 - (q/y)”“”} y*". (Fldc)

n=—oo

4, ay, a/y; d?]

e Quintuple product identity can have different forms such as

[q, 2 q/74l (027, a/7%d%) (F1.5a)

= 3 G {1- 20"} (a5%)" (F1.5b)
= 3 3G {1— 210} (g2)" (F1.5¢)
- 3 {1 (4/2) 1+3n} (¢2%)" (F1.5d)
_ io #G) {1_(q22)2+3n} (q%/2%)" (F1.5¢)

as well as different limiting expressions:

+oo

S @+6k) PO = g, g grdl [o0 d?] (F1.6a)
k=—o0

<« 3(5)+5k 1/2 1/2 2 2. 2

> (143k)gPErER = [q,q .q ;q}m[q,q;q]m- (F1.6b)

k=—o0
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PROOF. We need to show only (F1.5d), (F1.5¢) and (F1.6b) because the
others have been demonstrated in C2.6.

It is obvious that (F1.6b) is the limiting case z — ¢'/2 of (F1.5a) and
(F1.5d). Therefore only (F1.5d) and (F1.5e) remain to be confirmed.

Splitting (F1.5b) into two sums and reversing the later by n — —1 — n, we
can manipulate the sum as follows:

SO {1- 2"} a")" = Z (@@ nzin - ) ran tian
n _ Z { 5)4n 30 _ q3(g)+1+4n2_2_3n}
- zq ) (1= @) )"
which gives the bilateral sum stated in (F1.5d).

Similarly, splitting (F1.5¢) into two sums and shifting the summation index
n — 1 4+ n for the latter, we can reformulate the sum as follows:

Zq3(g) {1 - zl+6"} (¢°/2*)" = Z {q3(3)+2"2_3" — q3(3)+2"zl+3"}
_Z{ §)+2n ,—3n _ q3(’;)+2+5nz4+3n}
:Zqzz(’;){l _ (q22)2+3n}(q2/z3)n

which is exactly the sum displayed in (F1.5e). O

F2. Ramanujan’s bilateral ;1:-series identity

11 {i‘q; Z}:{q, c/a, az, Q/azﬂqL, (le/al < |2| < 1). (F2.1)

e, qla, z, c/az

PRroOF. For a large natural number M, choose three complex parameters

a — aq_M
b — c/az

c — cq_M.
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Then the g-Gauss theorem E2.2 can be restated as

"1 [aqM, cfaz | Z} _ (/a5 @)oolaMaz; @)
cg 1 (23 D)oo (a5 q)oc
We can further reformulate it by shifting the summation index n — k+ M
as

i (GQC])k(qMC/aZ;Q)ka — M (9)m (@ Meadm  (c/a;g)so (@™ Mazig) oo
c: 1+ . c/az;q)m(q~ " a;q)m 219)o0 (@777 C3q) o
= (@ OR(@ Mgk (c/azia)m (e~ M asq)n (2:9)oc (a™ M e50)
(s @)m(q/az; Om (c/a; @)oo(az; @)oo
(q/a; Qumlc/az; Om (6 @)oo (25 @)oo

Letting M — oo, we get the Ramanujan 11;-bilateral series identity

—+oo

] = 3 @ fenafeza
T [C]q,z}— > —[Z’ Yot la] teral <121 <1

k=—o0

where the convergence condition is figured out by analytical continuation.

In fact, the series along the positive direction

+

8

a; Q)k Lk
(¢ Ok

e
I
o

converges when |z| < 1. While the series along the negative direction

—+oo —+oo

(@ @)k (a/c; @n ( c \F
- L — ~—r 7 —
; (¢; @)k ; (a/a; @)k (az)
converges when |z| > |c/al. O

F3. Bailey’s bilateral g¢s-series identity

For complex parameters a, b, ¢, d, e satisfying the condition ’an / bcde’ <1,
there holds Bailey’s very well-poised non-terminating bilateral series iden-
tity (cf. [56, §7.1]):

Q\/a, _Q\/a, ba & da € ’ q(l2
;o F3.1
6¢6 |: \/a’ _\/aa q(l/b, q(l/C, q(l/d, qa/e q, bcde ( 3 a)

_ |4,9a,q9/a,qa/bc, qa/bd, qa/be, qa/cd, qa/ce, ga/de ’ (F3.1b)
~ |lqa/b,qa/c,qa/d, qa/e, q/b,q/c,q/d, q/e, qa*/bede ' '

Here we reproduce a recent proof provided by Schlosser (2003).
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F3.1. Lemma. For three complex parameters a, b and d with |qa/bd| <1,
there holds the following summation formula:

G 1ol = [ s 1o
% 65 {d/a, q\/%, —q\/%, b/a, q~"d/a, q_"d ' qa}
Vdja, —\/dJa, qd/b, ¢+, ¢*"/a " bd

PRrROOF. According to the ¢g-Dixon-Dougall formula, we have

{d/a q\/d/a, —qv/d/a, b/a, ¢ "d/a, q"d ’q' @}
Vifa, —/dJa,qdfb, ¢, ¢ ~"/a | bd
_ {q”"a/b, ¢ =" /b, 4/d, qd/a ’q}
q"*t", ¢"""/a, qd/b, qa/bd |7|

Separating the factorials dependent in n:

(@ *"a/b oo (@ Dn (99/b; @)
(@ @)oo (ga/b; @) (@ @)oo
(@ 7"/b oo _ (g)”(b; Do, (4/b; @)oo
(¢*7"/a; @) b/ (a; @n  (q/05 @)oo
we can restate the last series as
{d/a a\/d/a, —q\/d/a, ba, ¢~"dfa, ¢"d ’ qa}
Vafa, —/dfa,qdfb, ¢+, ¢ /a | b
_ |4/b: q/d; qa/d, qd/a O ay"
B {q, qd/b, a/a, qa/bd } {qa/b, ‘q} (b)

which is equivalent to the formula displayed in Lemma F3.1. ]

F3.2. Now we are ready to prove Bailey’s very well-poised non-terminating
bilateral giyg-series identity.

Recalling the definition of bilateral series
+o0 2 2\ "
1—q¢*"a | b c d e qa
Eq(F3.1a) = —_ ’ ’ b ’ —_—
a(F3.1a) nzz_w 1—a {qa/b, qa/c, qa/d, qaje q} N (bcde)

and then replacing the factorial faction related to b and d by Lemma F3.1

(%)n{q;/’b qad/d’q} = B qad/d’ } {qq/’bqﬁfé/idf}dq‘;ff/ii }
{d/a q\/dja, —q\/d]a, bja, ¢"dfa, q¢"d ’ qa}
Vafa, —/dJa, qd/b, ¢+ ¢ /o lT bd
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we can express the gig-series as the following double sum:

¢, g/a, qd/b, qa/bd’ }
Eq(F3.1a) =
A(F3.1a) {q/b, aa/b, qfd, qd/a

—+oo n

1— g a, c, d, qa

Xn_z;oo 1—a {q, qa/c, qa/d, qa/@’q} (cde)

o~ L—¢**d/a [d/a, b/a, ¢ "d/a, ¢"d ga\"
X Z 5 1+n 1-n ’q 77 .

— 1-dfa [ ¢ qd/b, ¢ ¢ "/al7], \bd
Interchanging the summation order and then combining the following fac-
torial fractions

_ )n+k
(G Dn  (@T59)k ( Dntk
(@ @)n . (@ "d/a;gk  _ (g)k (a;¢)n—
(ga/d;q)n — (¢'7"/a; @)k (qa/d’q)nfk

we can further reformulate the equation (F3.1a) as follows:

(& @, (@@ _ (di@ntr

4, q/a, qd/b, qa/bd ’ }
Eq(F3.1a) =
al : [q/b, qa/b, q/d, qd/a
iw d/a,b/a (g)k
1—d/a | ¢,qd/b L \b
oo 2n
1—-¢"a c, e
g n;m l-a [qa/c, qaje ’ qL
(d; Ontr (@5 n—k (ﬂ)n
(@ Dn+r (qa/d; @)n—y \cde
F3.3. The last sum with respect to n begins in effect with n = —k because

the shifted factorial 1/(¢; ¢)n+k is equal to zero when n < —k. Indicate with
Q the last sum. Therefore it can be reformulated through j := n + k as
follows:

O - § 1— ¢%—2kg [ c, e ’ } (diq); (a;q)j—2n (ﬂ)j*k
=0 l—a qa/c, qaje v (@9); (qa/d;q)j—2r \cde '

By means of two relations

(a;q)j—2  (@3@)—2r (¢ %*a;q);

(qa/d;q)j o (qa/d; q) -2 (¢*~2*a/d; q),

c, e c, e q*kc, q*ke
’ = ’ 1—k 1-k ’q
ga/c, gaje 1] ga/c, gaje || |q"*a/e, ¢Fase |7
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we can express () in terms of the g-hypergeometric series:

_ 2k . k
a — 1-¢""a (a,q.)—zk { ¢, e ’q} (c;de)
1—a (qa/d;q)—ak 9a/c; qaje | "] , \qa

x fl—qzj_%a ¢ re. qte d g ‘ qa
1—g%a [¢" "a/c,q" *a/e, g, q %a/d cde

7=0
_ (qa; q) 2 c e cde
= i e e |9, )
X ot {qzka, qlii a, —qii\/ﬁ, q:kc, q:ke, 7d ’ v qa } .
q a, —¢'*va, ¢""*a/c, " *a/e, ¢* "**a/d cde

When |ga/cde|] < 1, the last series can be evaluated by ¢-Dixon-Dougall
formula (E7.4a-E7.4b) as follows:

5 q—Qka q1 k a, _q1 k\/— q—kc’ q—ke d ’ qa
695 k\/—’ 1 k\/— q1 ka/c q1 ka/e q1 Qka/d q; —~ cde

q" 2ka, qa/ce, ¢ "*ajecd, q'~ ka/de’
@ *aje, ¢*Fale, ¢'"*a/d, qa/cde

( a/d; )—2 ajc, qaje a, qa/cd, qa/ce, qa/de
- q(qa;q)q_%]C {qqa/cd, qqa/de ’q} {qqa/cq qa/cil qqa//e qqa//c(ile ’ Lo

which leads us consequently to the closed form for €2:

Q

(id‘e)k [ ¢, e ' qa, qa/cd, qa/ce, qa/de '
qa |qa/cd, qa/de qa/c, qa/d, qa/e, qa/cde
(cde)’C [¢'~*a/cd, ¢*~*a/de qa, ga/cd, qa/ce, qa/de
(St [ e e ’
qa’) | a e, qe . Laa/c, qa/d, qa/e, qa/cde | 7]
_ (ﬂ)k [cd/a, de/a ’ qa, qa/cd, qa/ce, qa/de ’
cde/ | qfc, afe qa/c, qa/d, qa/e, qa/cde

F3.4. Summing up, we can state the bilateral gig-series displayed in
(F3.1a) in terms of another g-series:

Bq(F3.1a) — | %9%4/0 ad/b.qa/bd, ga/cd, ga/ce,qa/de ’
’ q/b,q/d,qd/a,qa/b,qa/c,qa/d, qa/e, qa/cde

) il_qi% {d/a, b/a, cd/a, de/a ’ } (ﬁ)k

o 1-— d/a q, qd/ba Q/C, Q/e bede
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The last series can be again evaluated by the very well poised non-terminating
0s-summation formula as follows:

{d/a a\/d/a, —q\/d/a, bla, cd/a,de/a ’q. _}
Vidja, —\/d]a, qd/b, q/c, qfe |7 bede

qd/a, qa/bec, qa/be, qa/cde ’
qd/b, q/c, qfe, qa®/bede

We therefore have established the following

Fq(F3.1a) = | @ 99:4/0:4d/b. ga/bd, qa/cd, qa/ce, qa/de ’
UF312) = | i/, a/b, a/d, qo/b, g0/, qa/d, qafe, qafcde | 9
[qd/a, qa/be, ga/be, qa/cde ’

Lad/b, q/c, qfe, qa®/bede

(4. qa,q/a,qa/be, qa/bd, qa/be, qa/cd, qa/ce, qa/de ’
| qa/b,qa/c,qa/d, qa/e, q/b,q/c,q/d, q/e, qa*[bede

which corresponds exactly to (F3.1b).

This completes the proof of Bailey’s very-well-poised gg-series identity. [

F3.5. The quintuple product identity. The identity displayed in (F1.5a)
and (F1.5b) is a limiting case of Bailey’s very-well-poised g1)s-series identity.

In fact, letting b = —/a and ¢, d, e — co, we can state (F3.1a-F3.1b) as
+oo

31— gz (0a®?)" = (1 )LD 9% 434
2 ¢ {1 q\/_}(q ) . \F)[—q\/a, —q/Va; )

L e e, g/e, Plasd?]
— ¢ Va. a/Vaid)  [aa. a/aid],

Replacing a by 22, this becomes the quintuple product identity displayed in
(F1.5a) and (F1.5b). O

n=—oo

F4. Bilateral g-analogue of Dixon’s theorem

For the cubic-sums of binomial coefficients, there is Dixon’s well-known
theorem, which states that

n+é 3n

> () - Comn )2 270 (F4.1)
== 0, §=1.
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Its terminating g-analogue was first found by Jackson [44] and subsequently
generalized by Bailey [8]. Following Bailey’s derivation, we will establish
two general well-poised bilateral series identities:

qu, b, ¢, d q 4, q/be, q/bd, q/cd
A F4.2
44 {w, a/b, q/c. q/d ' © bcd} {q/b, a/e, q/d, q/bed | Oo( )

qu,qu, b, ¢, d ’ ) q__1 | q,1/be, 1/bd, 1/cd ’
o [ o e |0 e | = Lol afnca-nea 4] (P2
1—1/quv
(1-1/u)(1-1/v)
Further bilateral identities of this type and applications can be found in
Chu [26], where a systematic treatment of basic almost-poised hypergeo-
metric series has been presented.

(F4.4)

F4.1. Proof of (F4.2). Recall the non-terminating very-well-poised s
summation identity (E7.4a-E7.4b):

695 {a, qﬁa __qﬁ, qab/’b qac/’c qa/d‘q7 bcd}

qa, qa/be, qa/bd, qa/cd ’ ’ﬂ
qa/b, qa/c, qa/d, qa/bcd ’ bed

Letting a — 1, we can restate the result as
+oo
q.q/bc, q/bd, q/cd } k { b, ¢, d } q \*
=14+ {1+ —
L,/b, a/e.afd,q/bed | ] ;{ o, aferasal 2, (5ea)
—+o0
B b, c, d q \*
_1+Z{/b q/c q/d’ } (bcd)
—+o0
b, c, d q \k
T ; { /b, q/c, q/d’ } k (bcd)
_ f ot il ()
L Lalbale g/d |} \ped)

In terms of bilateral series, this becomes the following well-poised summa-
tion identity

<1

" o 0 =
s q/b g/e, a/d| T bed bcd B
whose reversal reads as

s {ql;’b, q?’c, q(/ld"“ ch_d} B {qq/’lz/qb/cc’,qq//bi’j//lfi’q} (F46)

s /bC, /bd, /cd
el a]  was)
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In view of the fact that

(quigs _ 1-we® 1w,
(w; @)k 1—w l—-w 1-w

the linear combination of (F4.5) and (F4.6) leads us to bilateral identity
(F4.2) with an extra w-parameter:

gl boed ’q'iil _ {q,q/bc,q/bd,q/cd q}
T w, g/, qfe, q/d T bed a/b,q/c,q/d,q/bed

F4.2. Proof of (F4.3-F4.4). Instead, if taking a = ¢ in non-terminating
very-well-poised ¢5 summation identity (E7.4a-E7.4b) and then multiply-
ing both sides by 1 — ¢, we get

qan/bCan/bdaq2/Cd ’ :l {1 q1+2k}|: ba c, d ’ :l ( 2 )k
/b, % ¢, q%/d, ¢*/bed | @2/, /e, q?/d | 1] \bed
S bl (2
- 2 2 2 3
= a7 /b.q7 /e, g7 /d 7] \bed
S, e, ] (L)
— /b, q?/d 1, \bea
2

S bed T 2k
:k;m_(f/b, ¢*/e,q?/d | 7], (@)

where we have performed the summation index substitution k¥ — k — 1 for
the second sum.

In terms of bilateral series, this reads as the following well-poised summation
identity

¢ [ b, ¢ d ’ .i} _ {q,qQ/bc,qQ/bd,qQ/Cd } (FA7)
3312 /b, ¢ e, ¢®/d | T bed /b, ¢%/e,*/d, ¢/bed | 1] -

Shifting the summation index by £ — k —1 and then performing parameter
replacement b — ¢b, ¢ — qc and d — qd, we can derive the following
equivalent result:

b,

) . ~ —1[ q,1/bc,1/bd,1/cd 1
393 [1/b,1/c, 1/d ’q, @} = g |16 1/e,1/d g7 bed ’ _ (F4.8)
Its reversal can be stated, after some little modification, as
_ b, C, . q . q’]_/bc’]_/bd’l/cd
33 11/b, 1/c, 1/d ’q’ @} = |1/b1/e,1/d, g7 bed ’ q_ _ (F4.9)
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Note further that
b c d 1
) ! T — | = F4.1
3¥s L/b, /e, 1/d ’ & bcd} (F4.10)
which is the case k = 1 of the following general statement:
" C1, C2, Cl42k 1
TRt Jey, Lfea, -+, 1cion |7 cren - 1q0n

In fact, denote by © the bilateral y-series on the left hand side. Its reversal
with the summation index shifted by K — k — 1 can be stated as
142k

} = 0. (F4.11)

qci, qca, -+, qCi+2n

1
0 = : il
1+2H1/}2H+1 [Q/Cla Q/C2a Tty Q/Cl-&-?fi 9 1_‘[ CL‘|

=
c c c 142k 1
_ 1, 2,777 14+2kK . -
= 1+2H1/)2H+1 [1/01’ 1/02’ e 1/01—&-25 q; 1_.[ CL‘|
1=
1+2k 1+2k —1
1— 1/cL{ 1 }

X —_ — .

L:H1 1 o CL L:H1 CL

Simplifying the last factor-product, we find that
0 = (-9 =0
which is exactly (F4.11).

By means of three terms relation

(qui @)k (qui@)e  _  1—ug®1—vg"
(w; )k (v Q) I—u 1-v

1 . U+ v k uv ok
-wi-v (-wi-o! "T-wi-n’

we can establish from the combination of (F4.8), (F4.9) and (F4.10) the
following general identity with two extra free-parameters:
qu, qu, b, ¢ d | q 1—1/quu
U |\, 1/b, 1/c, 1/d"” @} - (1—1/u) (1—1/v)
q, 1/bc, 1/bd, 1/cd
{q/b,q/c,q/d,q‘l/bcd’ L
which is the bilateral identity stated in (F4.3-F4.4).

F4.3. g-Analogue of Dixon’s theorem. Putting b = ¢ =d = ¢7" in
(F4.5), we can state the result in terms of ¢-binomial sum
- 2n 13 ksk- (4 9)3n

~1F| | - F4.12

2 0] e (a:9)3 (12

k=—n

which is the g-analogue of (F4.1) corresponding to ¢ = 0.
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Similarly, taking b = ¢ = d = ¢~™ in (F4.7), we can express the result as
another g-binomial sum

14+n

k(1207 ke - (G 914se
> (1) [n+k} 4 (g9 (F4.13)

k=—n

which is the g-analogue of (F4.1) corresponding to § = 1.

F5. Partial fraction decomposition method

For terminating hypergeometric series with integral differences between nu-
merator parameters and denominator parameters, an interesting identity
was first discovered by Minton (1970) and slightly extended by Karlsson
(1971). Their g-analogue was then established by Gasper (1984). The bi-
lateral non-terminating forms of these formulae have been found by Chu
(1994), who has further generalized these results into basic bilateral very
well-poised hypergeometric summation identities.

The purpose of this section is to present the formulae of Chu-Karlsson-
Minton for basic hypergeometric series with integral parameter differences.
For the terminating cases and their dual formulae, refer to Chu (1998).

F5.1. Theorem. For complex numbers a, ¢, d, and {z;}4_, with A and
{ni}¢_, being nonnegative integers and n = Zi:l ny, there holds the bi-
lateral series identity with integral parameter differences

a, da qnll'la qn2$23 ) nel'f ’ 1—X
a F5.1a
t+22+0 [C’ o, a1, Ta,  cee ¢q "/ ( )

¢
¢ g c/d, qdfa } f”k/d Dy,
= F5.1b

|:q/aa C, qda q/d ¢ 1;[ xka q) ( )

provided that (|g/a| < |¢*| < |¢"/c|). This identity contains, in particular,
the results due to Gasper [33] on unilateral g-series as special cases.

ProOOF. Consider the function of complex variable z defined in terms of
g-shifted factorials by

¢
H :”’C/Z q me (F5.2)
l'ka )

00 k=1

f(z) = 21 {qc, 2/2/22 q;//; ’ }
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It is not hard to verify that f(z) has simple poles z = ¢/ for j = 0, 41, £2, -

with residues
¢

_{q_l_/\/a}j (a3 9); I (@213 9); (F5.3)

(¢ a); = (enci);

Denote by §,, and 0,, the circles with the center at the origin and radii

lg|™*1/2 and |q| =™ 1/2, respectively. It is clear that there is no pole of f(z)
passing through 8, or 9,,. Then the residue theorem (cf. [58, §3.1]) states
that

fz) +Z% _ QL t({(t) b (F5.4a)
2 —~ T(T—=% i Jg, —z
! LG (F5.4b)

2mi Js t(t—z)

where the summation runs over all poles {7} of f(z) between contours &,
and O,,. For sufficiently large m, we can estimate that

/ O 4 - O{q(lﬂ—n)mw} (F5.5a)
om

s T

= O(¢el™) (F5.5b)

FO g _ o fym @ foian C

/5m t(t—z) dt = O {q @™ % @) } (F5.5¢)
= O(l¢"*/al™). (F5.5d)

When |q/a| < |¢*| < |¢"/cl|, both integrals displayed in (F5.4a-F5.4b) tend
to zero as m — oo. Therefore we can express (F5.4a-F5.4b) as a bilateral
summation identity:

a, 2 qnlxla qn2$27 Ty qmiﬁf ' L 1=A
e+2%240 L’ 0 o P /a
0
T/ 2;
— |: q, q, C/Za qZ/(L ’q:| ZA H ( k/ Q)nk
00

q/a, ¢ qz  q/z i @y,

whose convergent condition coincides with |g/a| < [¢*| < |¢"/c|. Rewriting
the last identity with z being replaced by d, we confirm the formula displayed
in (F5.1a-F5.1b). O

Two interesting special cases of (F5.1a-F5.1b) are worth to mention:

a, 4z, z . _ 1_$/Z q, 4, C/Za qZ/(L’
31/)3 |:C, z, qz ’ & q/a:| N 1—= |:C, Q/(L, qz, Q/Z 1 (F56a)

a, 4gx, z 1—Z/!E q, 4, C/Za qZ/(L ’
1ja] = —Z :
31/)3 |:C, T, qz ’ “ /a:| 1- 1/:E |:C, Q/(L, qz, Q/Z 1 (F5 6b)
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where their convergence conditions are given respectively by |c| < |¢| < |a]
and |¢] < 1 < |al.

F5.2. Corollary. Replacing each parameter by its g-exponential in equa-
lity (F5.1a-F5.1b) and then letting ¢ — 1, we can state the limit as bilateral
hypergeometric summation formula (n 4+ R(a —¢) < 0):

a, d, T1+niy, T2+n2, -, Tpt+ng
t+2Hatg |:C’ 1+4d, 1, T, e ) ’1:| (F5.7a)
¢
1—a,c md (zk — d)n,
_ I ) . F5.7b
[1—a—|—d, c—d} sinwd .-~ (Tk)ny, ( )

This generalizes the identity due to Karlsson [46]

a, da r1+ni, x2+n2, -, xf"‘”f’
2 Fqe { 144, 21, s, . 2, 1} (F5.8a)

T(1-a)l(1+d) 1o (x5 — d)n,

which is a non-terminating extension of an earlier result due to Minton [50].

F5.3. Transformation of bilateral series into unilateral series. For
|w| < 1, recalling the ¢-Gauss summation formula

s _ ! {Zw q} 201 [q/w’qk'z’q;w}

(wzi @)k 1—2¢% | w2 q'*the

we can consider the series composition (|g/a| < |¢*] < |¢'T"/cw|):

a, z, qnll'la qn2$23 Ty qnel'f ’ 1—X q,wz
t+2¥2+e ¢ q "/al x q
|:Ca wz, I, T2, -, Ty ’ Z,w 0o

+00 1-x/ \F - k
§ 0 ot ] o o1 |

1—2zq® e, {z}

(q/w;q); io [a, q'z, {q" s}

C’ q1+zzﬂ {‘/Elﬁ?}

k=—o0
+o00 i

-y

= l-z2q (4:9) =

q} k(ql’*/a)k-

Under the condition |g/a| < |¢*| < |¢"/¢|, the last series can be evaluated
by (F5.1a-F5.1b) as
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a, z My, "2xe, -+, qMx _
er2W2e q ¢, ¢ ’% q' A/a}

1
¢ q +lZa x1, x2, Tty Ty

bl ] e
_q/a’ G q iy /Z kvq)nk

B [ ¢, q, c¢/z, qz/a d (lﬁk/%Q)nk
N q/a, q/z ’qLo 2 H

& 4z (@),

Tz e gz ¢ 2/%k;q);
(qk_l_nc> Bz//a,qz ’qL H (ql(ijniz—%.

k=1

X

Substituting this result into the last expression, we get the following trans-
formation:

€+2w2+€ a, 2 qnlxla qn2$27 Tty nexf ‘
¢, Wz, Ty, Z2, )

¢ ¢ A/a} (F5.9a)

_ { q, w, ¢/z, qz/a ’q} A ﬁ (xk/ZW)nk (F5.9b)

Q/aa c, wz, q/Z hetl (:Ek; Q)nk

X 420144 {Q/w’ ZE?Z” {qigig;iﬁ} ’q; qk_l_"cw} (F5.9¢)

provided that |g/a| < |¢*| < |¢**"/cw|, which guarantees that both non-
terminating series are convergent.

When g — 1, we write down the transformation for ordinary hypergeometric
series (1 +n+R(a —c) <1 < R(w)):

H. a, Z, ny+x1, nNo+x2, -, Ng+ Ty
2 Hoqg 1
c, w+z, x1, x2, Tty Ty

‘
F{l—a,c,w—i—z,l—z} H (Tk — 2)ny

w,e—z,1—a+z Pl (@) s

1l—c+2z, {1+z—-a.} M

« r 1—w,
251+ 1—a-+z, {1+z—x,.i—n,.i}

In particular, putting n = 0 and then evaluating the 2¢1-series by the Gauss
summation theorem, we recover the well-known Dougall formula:

a, b _ 1—a,1—-0b,¢c,d,c+d—a—b—-1
2H> L, d’l} _F{ c—a,c—bd—a,d—b }

provided that (c+d—a—b) > 1 for the convergence of the bilateral series.
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F'5.4. Bilateral basic very-well-poised summation formula. The par-
tial decomposition method can further be applied to derive the following
bilateral very-well-poised summation formula (Chu, 1998).

For complex numbers a, b, ¢, d, and {zy, yk}ﬁzl satisfying zpyr = aqtT*
(k=1,2,---,0) with {n}{_, being nonnegative integers and n = Zi:l Ny
there holds

00 6¢6 2£|:Q\/a,_qﬁ, ba () da (l/d, {l'ka yk}
* * \/_a _\/aa q(l/b, q(l/C, qa/da qda {qa/xk,qa/yk}

1-ng
¢; 4z } (F5.10a)

- {q, ¢, qa, q/a, qa/bd, qa/cd, qd/b, qd/c ’ } (F5.10D)
qa/d, qd/a, qd, q/d, q/b, q/c, qa/b, qa/c | 7|
L
n qd/zr, qd/yk ’
d F5.10
X (a/d) kl;[l [qa/xk, qa/yk q o ( c)

provided that |¢' ™"a/bc| < 1 and the bilateral series is well-defined.

PrOOF. Consider the meromorphic function of complex variable z defined
by

_ |9 4, a, q/a, qa/bz, qa/cz, qz/b, qz/c ’
Pl = [a/z, qz/a, 2, q/%, q/b, q/c, qa/b, qa/c (F5.11a)
- qz/Tk, q2/Y
k k
n ’ . F5.11b
< a1l [qa i M (F5.11D)

We can check without difficulty that F'(z) satisfies the multiplicative re-
flection property F(z) = F(a/z). It has simple poles z = ¢/ and z = a¢’
(j =0,4+1,42,---) with residues

i P AL 1| ML I

J k=1

—i(14n g
x {_q j.(f ) at z=g7 (F5.12b)
+ag?=")  at z=ag’.
Write |a| = |¢|4 and A = € (mod 1). Denote by §,, and 0y, the circles with
the center at the origin and radii |¢|™t(1+€)/2 and |q|~™*t(1+€)/2 respec-
tively. It is clear that there is no pole of F(z) passing through d,, or Oy,.
Then the residue theorem (cf. [58, §3.1]) states that

@ +Z% _ % 5 %dt (F5.13a)
_ 1 ) 4 (F5.3b)

2mi J5 t(t —2)
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where the summation runs over all poles {7} of F'(z) between contours &,
and O,,. For sufficiently large m, we can estimate that

F(t —m+(1=€)/2 p g—m+(1=€)/2 /0
/ ( ) dt = O {q—mn |:q /b.q /
é

1 m} (F5.14a)

t(t — Z) q*er(lff)/Z ,q7m7(1+e)/2a
= O0{(¢" "a/bc)™} (F5.14b)
F(t) m—mn q7m+(3+6)/2 /b,q7m+(3+€)/2/c
/amt(t — Z) dt = O {q |: q—m+(1+€)/2,q7m+(3+g)/2 /a q . (F514C)

= O0{(¢* "a/bc)™}. (F5.14d)
Note first that for m — oo, both integrals displayed in (F5.13a-F5.13b)

tend to zero under condition |¢*~"a/bc| < 1. Write then the residue-sum
displayed on the left hand side of (F5.13a) explicitly

Res[F(z)],_, = aJ e ‘ .
Ere X G el L i,

agi (=) i)
X - - — - -
{ agi(agi —z)  qI(q77 = 2) }

where the difference of two fractions in the last line can be simplified as

ag?(=m) g 70+n) B —(1 —q¢¥a)g "

agi(ag’ —z) q /(¢ —2)  2(1-¢2)(1-ga/z)

We can therefore reformulate the limit of integral-sum (F5.13a-F5.13b) as
the following bilateral series identity:

1—a 1—¢iz 1—¢ia/z |qa/b,qa/c

F(Z)(l—z)(l—a/z) _ *Z“’ 1—z 1-a/z { b, ¢ M

j=—00

X

1—g%a Tk Yk q' "ay’
11 o {550
l—a 2 lga/wrqafys | 7], L be

where the bilateral series on the right converges under the same condition
l¢'~"a/be| < 1.

Replacing z by d, we see that this identity becomes exactly the basic very
well-poised bilateral hypergeometric formula (F5.10a-F5.10b). Unfortu-
nately, this very well-poised evaluation is not a proper extension of (F5.1),
even though we have expected that. (|
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Remark When n = 0, we recover from the formula (F5.10a-F5.10b-F5.10c)
a special case of Bailey’s bilateral gig-series identity (’an / bcde’ <1):

6¢6 Q\/a, _Q\/a, ba ¢, da ’ ¢ 2
\/aa _\/aa q(l/b, q(l/C, q(l/d, q(l/@ ' dee

_ l4,9a,q/a,qa/bc,qa/bd, qa/be, qa/cd, qa/ce, qa/de ’
= |qa/b,qa/c,qa/d,qafe, q/b,q/c,q/d,q/e, qa*/bede

F5.5. Ordinary hypergeometric counterparts. For ¢ — 1, we derive
from the limit of the last bilateral basic hypergeometric series identity the
ordinary hypergeometric summation formula.

For complex numbers a, b, ¢, d, and {xy, yk}i:l satisfying the condition
Tr+ye = 1+a+mng (k=1,2,---,¢) with {ng}t_, being nonnegative
integers and n = Zi:l ng, there holds

1+ %a ba & da a— da {xka yk}

2£+5H5+2£[ a

1| (F5.15
5 14a—b, 1+a—c, 1+a—d, 1 -I-d, {1+a7mk,1+a7'yk} :l ( a)

sinma wd H 1+d—ap, 14+d—yg
o Ta sm7rdsm7ra— l4+a—xk, 1+a—yx

L(F5.15b)

o r 1+a—b, 1—|—a—c, 1-0, 1—c¢
l4a—-b—-d,1+a—c—d,1—-b+d, 1 —c+d

provided that n +R(b+ ¢ —a) < 1 and the bilateral series is well-defined.

} (F5.15¢)

The Chu-Karlsson-Minton formulae (F5.7-F5.8) may be regarded as its limi-
ting case of a — oo after replacing ¢ by 1+ a — ¢. When n = 0, it reduces
to a special case of the Dougall formula (cf. [56, §6.1]):

1+%’ bv C, d, e
5H5[ 2 l4a-b l4+a—c l+a—d, 1+a—e 1_ (F5.16a)
— l+a—-b, 1+a—c, 1+a—d, 1+a—e ]
B F|:]__|_a—b—C,1+a_b_d’]_+a_c_d’1_a- (F516b)
1—b,1—¢,1—d, 1—e, 1+2a—b—c—d—e]|
F[l'ﬂl_b_ea1+G—C—6,1+a—d—e,1+a_ (F5.16¢)

where R(1+2a —b—c—d—e) > 0.





