
CHAPTER F

Bilateral Basic Hypergeometric Series

This chapter deals with the bilateral basic hypergeometric series. The Ra-
manujan 1ψ1-summation formula and Bailey’s very-well-poised 6ψ6-series
identity will be established. We shall also investigate the non-terminating
bilateral q-analogue of Dixon’s theorem on cubic-sum of binomial coeffi-
cients, partial fraction decomposition method on basic hypergeometric series
with integral differences between numerator parameters and denominator
parameters.

F1. Definition and notation

F1.1. Definition and convergence. Let
{
ai

}r

i=1
and

{
bj

}s

j=1
be com-

plex numbers subject to the condition that ai 6= qm and bj 6= q−n with
m ∈ N and n ∈ N0 for all i = 1, 2, · · · , r and j = 1, 2, · · · , s. Then the
bilateral q-hypergeometric series with variable z is defined by

rψs

[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣ q; z
]

=
+∞∑

n=−∞

{
(−1)nq(

n
2)

}s−r
[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣ q
]

n

zn.

For m ∈ Z, we find by shifting the summation index n → m + n, that the
bilateral rψs-series satisfies relation

rψs

[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣ q; z
]

=
[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣ q
]

m

zm (F1.1a)

× rψs

[
qma1, q

ma2, · · · , qmar

qmb1, q
mb2, · · · , qmbs

∣∣∣ q; z
]
.(F1.1b)

When rψs has no zero parameters, we can reverse the summation order and
get another equivalent expression for the bilateral rψs-series:

rψs

[
a1, a2, ···, ar

b1, b2, ···, bs

∣∣∣ q; z
]

=
+∞∑

m=−∞

[
q/b1, q/b2, ···, q/bs
q/a1, q/a2, ···, q/ar

∣∣∣ q
]

m

{ B
Az

}m

(F1.2)
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where A := a1a2 · · ·ar and B := b1b2 · · ·bs have been defined for brevity,
and the shifted factorial with negative integer order has been inverted as
follows:

(x; q)−n =
(x; q)∞

(q−nx; q)∞
=

1
(q−nx; q)n

=
q(

n+1
2 )(−1/x)n

(q/x; q)n
, (n ∈ N0).

Splitting the bilateral series rφs into two infinite series:

rψs

[
a1, a2, ···, ar

b1, b2, ···, bs

∣∣∣ q; z
]

=
+∞∑

n=0

{
(−1)nq(

n
2)

}s−r
[
a1, a2, ···, ar

b1, b2, ···, bs

∣∣∣ q
]

n

zn

+
+∞∑

m=1

[
q/b1, q/b2, ···, q/bs
q/a1, q/a2, ···, q/ar

∣∣∣ q
]

m

{ B
Az

}m

we can check without difficulty that for |q| < 1 and R =
∣∣B/A

∣∣, the conver-
gence condition of the bilateral series is determined as follows:
• if r < s, the series converges for |z| > R;
• if r > s, the series diverges for all z ∈ C except for z = 0;
• if r = s, which is the most important case, the series converges for
R < |z| < 1.

F1.2. Ordinary bilateral hypergeometric series. Similarly, we can
define the (ordinary) bilateral hypergeometric series.

Let
{
ai

}r

i=1
and

{
bj

}s

j=1
be complex numbers subject to the condition that

ai 6= m and bj 6= −n with m ∈ N and n ∈ N0 for all i = 1, 2, · · · , r and
j = 1, 2, · · · , s. Then the (ordinary) bilateral hypergeometric series with
variable z is defined by

rHs

[
a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣ z
]

=
+∞∑

n=−∞

[
a1, a2, · · · , ar

b1, b2, · · · , bs

]

n

zn.

Only when r = s and |z| = 1, the bilateral rHr-series is of some interest.
Writing it in the sum of two unilateral series

rHr

[
a1, a2, · · · , ar

b1, b2, · · · , br

∣∣∣ z
]

=
+∞∑

n=0

[
a1, a2, · · · , ar

b1, b2, · · · , br

]

n

zn

+
+∞∑

m=1

[
1− b1, 1− b2, · · · , 1− br
1− a1, 1− a2, · · · , 1− ar

]

m

z−m

we can determine the convergence condition of rHr-series as follows:
• if z = +1, the series converges for |<(B −A)| > 1;
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• if z = −1, the series converges for |<(B − A)| > 0.

F1.3. Examples. Here we shall review the Jacobi triple and the quintuple
product identities derived in C2.4 and C2.6 respectively.

• The Jacobi triple product identity can be stated in terms of bi-
lateral series as follows:

0ψ1

[
−
0

∣∣∣ q;x
]

=
+∞∑

n=−∞
(−1)n q(

n
2) xn = [q, x, q/x; q]∞ . (F1.3)

• An alternative form can be obtained by separating the sum into two
according to the parity of summation index n:

[
q2, qy, q/y; q2

]
∞ =

+∞∑

n=−∞
(−1)n qn2

yn (F1.4a)

=
+∞∑

n=−∞
q4n2

{
1− yq1+4n

}
y2n (F1.4b)

=
+∞∑

n=−∞
q4n2

{
1− (q/y)1+4n

}
y2n. (F1.4c)

• Quintuple product identity can have different forms such as

[q, z, q/z; q]∞
[
qz2, q/z2; q2

]
∞ (F1.5a)

=
+∞∑

n=−∞
q3(

n
2)

{
1− zqn

} (
qz3

)n (F1.5b)

=
+∞∑

n=−∞
q3(

n
2)

{
1− z1+6n

} (
q2/z3

)n (F1.5c)

=
+∞∑

n=−∞
q3(

n
2)

{
1− (q/z2)1+3n

} (
qz3

)n
(F1.5d)

=
+∞∑

n=−∞
q3(

n
2)

{
1− (qz2)2+3n

} (
q2/z3

)n (F1.5e)

as well as different limiting expressions:
+∞∑

k=−∞

(
1 + 6k

)
q3(

k
2)+2k = [q, q, q; q]∞

[
q, q; q2

]
∞ (F1.6a)

+∞∑

k=−∞

(
1 + 3k

)
q3(

k
2)+ 5

2 k =
[
q, q1/2, q1/2; q

]
∞

[
q2, q2; q2

]
∞ . (F1.6b)
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Proof. We need to show only (F1.5d), (F1.5e) and (F1.6b) because the
others have been demonstrated in C2.6.

It is obvious that (F1.6b) is the limiting case z → q1/2 of (F1.5a) and
(F1.5d). Therefore only (F1.5d) and (F1.5e) remain to be confirmed.

Splitting (F1.5b) into two sums and reversing the later by n→−1− n, we
can manipulate the sum as follows:

∑

n

q3(
n
2)

{
1− zqn

}(
qz3

)n =
∑

n

{
q3(

n
2)+nz3n − q3(

n
2)+2nz1+3n

}

=
∑

n

{
q3(

n
2)+nz3n − q3(

n
2)+1+4nz−2−3n

}

=
∑

n

q3(
n
2)

{
1− (q/z2)1+3n

} (
qz3

)n

which gives the bilateral sum stated in (F1.5d).

Similarly, splitting (F1.5c) into two sums and shifting the summation index
n→ 1 + n for the latter, we can reformulate the sum as follows:

∑

n

q3(
n
2)

{
1− z1+6n

}(
q2/z3

)n =
∑

n

{
q3(

n
2)+2nz−3n − q3(

n
2)+2nz1+3n

}

=
∑

n

{
q3(

n
2)+2nz−3n − q3(

n
2)+2+5nz4+3n

}

=
∑

n

q3(
n
2)

{
1− (qz2)2+3n

}(
q2/z3

)n

which is exactly the sum displayed in (F1.5e). �

F2. Ramanujan’s bilateral 1ψ1-series identity

1ψ1

[
a
c

∣∣∣ q; z
]

=
[
q, c/a, az, q/az
c, q/a, z, c/az

∣∣∣ q
]

∞
,

(
|c/a| < |z| < 1

)
. (F2.1)

Proof. For a large natural number M , choose three complex parameters

a → aq−M

b → c/az

c → cq−M .
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Then the q-Gauss theorem E2.2 can be restated as

2φ1

[
aq−M , c/az

cq−M

∣∣∣ q; z
]

=
(c/a; q)∞(q−Maz; q)∞

(z; q)∞(q−Mc; q)∞
.

We can further reformulate it by shifting the summation index n→ k+M

as
∞∑

k=−M

(a; q)k(qMc/az; q)k

(c; q)k(q1+M ; q)k
zk = z−M (q;q)M (q−Mc;q)M

(c/az;q)M (q−M a;q)M

(c/a;q)∞(q−Maz;q)∞
(z;q)∞(q−M c;q)∞

=
(q; q)M (q/az; q)M

(q/a; q)M (c/az; q)M

(c/a; q)∞(az; q)∞
(c; q)∞(z; q)∞

.

Letting M →∞, we get the Ramanujan 1ψ1-bilateral series identity

1ψ1

[
a
c

∣∣∣ q; z
]

=
+∞∑

k=−∞

(a; q)k

(c; q)k
zk =

[
az, q/az, q, c/a
z, c/az, c, q/a

∣∣∣ q
]

∞
, |c/a| < |z| < 1

where the convergence condition is figured out by analytical continuation.

In fact, the series along the positive direction

+∞∑

k=0

(a; q)k

(c; q)k
zk

converges when |z| < 1. While the series along the negative direction

+∞∑

k=1

(a; q)−k

(c; q)−k
z−k =

+∞∑

k=1

(q/c; q)k

(q/a; q)k

( c

az

)k

converges when |z| > |c/a|. �

F3. Bailey’s bilateral 6ψ6-series identity

For complex parameters a, b, c, d, e satisfying the condition
∣∣qa2/bcde

∣∣ < 1,
there holds Bailey’s very well-poised non-terminating bilateral series iden-
tity (cf. [56, §7.1]):

6ψ6

[
q
√
a, −q

√
a, b, c, d, e√

a, −
√
a, qa/b, qa/c, qa/d, qa/e

∣∣∣ q; qa
2

bcde

]
(F3.1a)

=
[
q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣ q
]

∞
. (F3.1b)

Here we reproduce a recent proof provided by Schlosser (2003).
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F3.1. Lemma. For three complex parameters a, b and d with
∣∣qa/bd

∣∣ < 1,
there holds the following summation formula:

(
a

b

)n [
q, b
a, qa/b

∣∣∣ q
]

n

=
[
q, q/a, qd/b, qa/bd
q/b, qa/b, q/d, qd/a

∣∣∣ q
]

∞

× 6φ5

[
d/a, q

√
d/a, −q

√
d/a, b/a, q−nd/a, qnd√

d/a, −
√
d/a, qd/b, q1+n, q1−n/a

∣∣∣ q; qa
bd

]
.

Proof. According to the q-Dixon-Dougall formula, we have

6φ5

[
d/a, q

√
d/a, −q

√
d/a, b/a, q−nd/a, qnd√

d/a, −
√
d/a, qd/b, q1+n, q1−n/a

∣∣∣ q; qa
bd

]

=
[
q1+na/b, q1−n/b, q/d, qd/a
q1+n, q1−n/a, qd/b, qa/bd

∣∣∣ q
]

∞
.

Separating the factorials dependent in n:

(q1+na/b; q)∞
(q1+n; q)∞

=
(q; q)n

(qa/b; q)n
× (qa/b; q)∞

(q; q)∞
(q1−n/b; q)∞
(q1−n/a; q)∞

=
(a
b

)n (b; q)n

(a; q)n
× (q/b; q)∞

(q/a; q)∞

we can restate the last series as

6φ5

[
d/a, q

√
d/a, −q

√
d/a, b/a, q−nd/a, qnd√

d/a, −
√
d/a, qd/b, q1+n, q1−n/a

∣∣∣ q; qa
bd

]

=
[
q/b, q/d, qa/b, qd/a
q, qd/b, q/a, qa/bd

∣∣∣ q
]

∞
×

[
b, q

qa/b, a

∣∣∣ q
]

n

(a
b

)n

which is equivalent to the formula displayed in Lemma F3.1. �

F3.2. Now we are ready to prove Bailey’s very well-poised non-terminating
bilateral 6ψ6-series identity.

Recalling the definition of bilateral series

Eq(F3.1a) =
+∞∑

n=−∞

1− q2na

1− a

[
b, c, d, e

qa/b, qa/c, qa/d, qa/e

∣∣∣ q
]

n

(
qa2

bcde

)n

and then replacing the factorial faction related to b and d by Lemma F3.1
(
a

b

)n [
b, d

qa/b, qa/d

∣∣∣ q
]

n

=
[
a, d
q, qa/d

∣∣∣ q
]

n

[
q, q/a, qd/b, qa/bd
q/b, qa/b, q/d, qd/a

∣∣∣ q
]

∞

× 6φ5

[
d/a, q

√
d/a, −q

√
d/a, b/a, q−nd/a, qnd√

d/a, −
√
d/a, qd/b, q1+n, q1−n/a

∣∣∣ q; qa
bd

]
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we can express the 6ψ6-series as the following double sum:

Eq(F3.1a) =
[
q, q/a, qd/b, qa/bd
q/b, qa/b, q/d, qd/a

∣∣∣ q
]

∞

×
+∞∑

n=−∞

1− q2na

1− a

[
a, c, d, e
q, qa/c, qa/d, qa/e

∣∣∣ q
]

n

(
qa

cde

)n

×
∞∑

k=0

1− q2kd/a

1− d/a

[
d/a, b/a, q−nd/a, qnd
q, qd/b, q1+n, q1−n/a

∣∣∣ q
]

k

(
qa

bd

)k

.

Interchanging the summation order and then combining the following fac-
torial fractions

(d; q)n

(q; q)n
×

(qnd; q)k

(q1+n; q)k
=

(d; q)n+k

(q; q)n+k

(a; q)n

(qa/d; q)n
× (q−nd/a; q)k

(q1−n/a; q)k
=

(d
q

)k (a; q)n−k

(qa/d; q)n−k

we can further reformulate the equation (F3.1a) as follows:

Eq(F3.1a) =
[
q, q/a, qd/b, qa/bd
q/b, qa/b, q/d, qd/a

∣∣∣ q
]

∞

×
∞∑

k=0

1− q2kd/a

1− d/a

[
d/a, b/a
q, qd/b

∣∣∣ q
]

k

(a
b

)k

×
+∞∑

n=−∞

1− q2na

1− a

[
c, e

qa/c, qa/e

∣∣∣ q
]

n

× (d; q)n+k

(q; q)n+k

(a; q)n−k

(qa/d; q)n−k

( qa

cde

)n

.

F3.3. The last sum with respect to n begins in effect with n = −k because
the shifted factorial 1/(q; q)n+k is equal to zero when n < −k. Indicate with
Ω the last sum. Therefore it can be reformulated through j := n + k as
follows:

Ω =
+∞∑

j=0

1− q2j−2ka

1− a

[
c, e

qa/c, qa/e

∣∣∣ q
]

j−k

(d; q)j

(q; q)j

(a; q)j−2k

(qa/d; q)j−2k

( qa

cde

)j−k

.

By means of two relations

(a; q)j−2k

(qa/d; q)j−2k
=

(a; q)−2k

(qa/d; q)−2k

(q−2ka; q)j

(q1−2ka/d; q)j[
c, e

qa/c, qa/e

∣∣∣ q
]

j−k

=
[

c, e
qa/c, qa/e

∣∣∣ q
]

−k

[
q−kc, q−ke

q1−ka/c, q1−ka/e

∣∣∣ q
]

j
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we can express Ω in terms of the q-hypergeometric series:

Ω =
1− q−2ka

1− a
(a; q)−2k

(qa/d; q)−2k

[
c, e

qa/c, qa/e

∣∣∣ q
]

−k

(cde
qa

)k

×
+∞∑

j=0

1− q2j−2ka

1− q−2ka

[
q−kc, q−ke, d, q−2ka

q1−ka/c, q1−ka/e, q, q1−2ka/d

∣∣∣ q
]

j

(
qa

cde

)j

=
(qa; q)−2k

(qa/d; q)−2k

[
c, e

qa/c, qa/e

∣∣∣ q
]

−k

(cde
qa

)k

× 6φ5

[
q−2ka, q1−k√a, −q1−k√a, q−kc, q−ke, d

q−k√a, −q1−k√a, q1−ka/c, q1−ka/e, q1−2ka/d

∣∣∣ q; qa
cde

]
.

When |qa/cde| < 1, the last series can be evaluated by q-Dixon-Dougall
formula (E7.4a-E7.4b) as follows:

6φ5

[
q−2ka, q1−k

√
a, −q1−k

√
a, q−kc, q−ke, d

q−k
√
a, −q1−k

√
a, q1−ka/c, q1−ka/e, q1−2ka/d

∣∣∣ q; qa
cde

]

=
[
q1−2ka, qa/ce, q1−ka/cd, q1−ka/de
q1−ka/c, q1−ka/e, q1−2ka/d, qa/cde

∣∣∣ q
]

∞

=
(qa/d; q)−2k

(qa; q)−2k

[
qa/c, qa/e
qa/cd, qa/de

∣∣∣ q
]

−k

[
qa, qa/cd, qa/ce, qa/de
qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞

which leads us consequently to the closed form for Ω:

Ω =
(cde
qa

)k
[

c, e
qa/cd, qa/de

∣∣∣ q
]

−k

[
qa, qa/cd, qa/ce, qa/de
qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞

=
(cde
qa

)k
[
q1−ka/cd, q1−ka/de
q−kc, q−ke

∣∣∣ q
]

k

[
qa, qa/cd, qa/ce, qa/de
qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞

=
( qa

cde

)k
[
cd/a, de/a
q/c, q/e

∣∣∣ q
]

k

[
qa, qa/cd, qa/ce, qa/de
qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞
.

F3.4. Summing up, we can state the bilateral 6ψ6-series displayed in
(F3.1a) in terms of another q-series:

Eq(F3.1a) =
[
q, qa, q/a, qd/b, qa/bd, qa/cd, qa/ce, qa/de
q/b, q/d, qd/a, qa/b, qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞

×
∞∑

k=0

1− q2kd/a

1− d/a

[
d/a, b/a, cd/a, de/a
q, qd/b, q/c, q/e

∣∣∣ q
]

k

(
qa2

bcde

)k

.
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The last series can be again evaluated by the very well poised non-terminating
6φ5-summation formula as follows:

6φ5

[
d/a, q

√
d/a, −q

√
d/a, b/a, cd/a, de/a√

d/a, −
√
d/a, qd/b, q/c, q/e

∣∣∣ q; qa2

bcde

]

=
[
qd/a, qa/bc, qa/be, qa/cde
qd/b, q/c, q/e, qa2/bcde

∣∣∣ q
]

∞
.

We therefore have established the following

Eq(F3.1a) =
[
q, qa, q/a, qd/b, qa/bd, qa/cd, qa/ce, qa/de
qd/a, q/b, q/d, qa/b, qa/c, qa/d, qa/e, qa/cde

∣∣∣ q
]

∞

×
[
qd/a, qa/bc, qa/be, qa/cde
qd/b, q/c, q/e, qa2/bcde

∣∣∣ q
]

∞

=
[
q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣ q
]

∞

which corresponds exactly to (F3.1b).

This completes the proof of Bailey’s very-well-poised 6ψ6-series identity. �

F3.5. The quintuple product identity. The identity displayed in (F1.5a)
and (F1.5b) is a limiting case of Bailey’s very-well-poised 6ψ6-series identity.

In fact, letting b = −
√
a and c, d, e→∞, we can state (F3.1a-F3.1b) as

+∞∑

n=−∞
q3(

n
2)

{
1− qn

√
a
}(
qa3/2

)n = (1−
√
a)

[q, qa, q/a; q]∞
[−q
√
a, −q/

√
a; q]∞

= (q; q)∞

[
qa, a, q/a, q2/a; q2

]
∞

[−
√
a, −q/

√
a; q]∞

=
[
q,
√
a, q/

√
a; q

]
∞

[
qa, q/a; q2

]
∞ .

Replacing a by z2, this becomes the quintuple product identity displayed in
(F1.5a) and (F1.5b). �

F4. Bilateral q-analogue of Dixon’s theorem

For the cubic-sums of binomial coefficients, there is Dixon’s well-known
theorem, which states that

n+δ∑

k=−n

(−1)k
( 2n+ δ
n+ k

)3

=





( 3n
n, n, n

)
, δ = 0

0, δ = 1.
(F4.1)
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Its terminating q-analogue was first found by Jackson [44] and subsequently
generalized by Bailey [8]. Following Bailey’s derivation, we will establish
two general well-poised bilateral series identities:

4ψ4

[
qw, b, c, d
w, q/b, q/c, q/d

∣∣∣ q; q

bcd

]
=

[
q, q/bc, q/bd, q/cd
q/b, q/c, q/d, q/bcd

∣∣∣ q
]

∞
(F4.2)

5ψ5

[
qu, qv, b, c, d
u, v, 1/b, 1/c, 1/d

∣∣∣ q; q
−1

bcd

]
=

[
q, 1/bc, 1/bd, 1/cd
q/b, q/c, q/d, q−1/bcd

∣∣∣ q
]

∞
(F4.3)

× 1− 1/quv
(1− 1/u) (1− 1/v)

. (F4.4)

Further bilateral identities of this type and applications can be found in
Chu [26], where a systematic treatment of basic almost-poised hypergeo-
metric series has been presented.

F4.1. Proof of (F4.2). Recall the non-terminating very-well-poised 6φ5

summation identity (E7.4a-E7.4b):

6φ5

[
a, q

√
a, −q

√
a, b, c, d√

a, −
√
a, qa/b, qa/c, qa/d

∣∣∣ q; qa

bcd

]

=
[
qa, qa/bc, qa/bd, qa/cd
qa/b, qa/c, qa/d, qa/bcd

∣∣∣ q
]

∞
,

∣∣∣ qa
bcd

∣∣∣ < 1.

Letting a→ 1, we can restate the result as
[
q, q/bc, q/bd, q/cd
q/b, q/c, q/d, q/bcd

∣∣∣ q
]

∞
= 1 +

+∞∑

k=1

{
1+qk

} [
b, c, d

q/b, q/c, q/d

∣∣∣ q
]

k

( q

bcd

)k

= 1 +
+∞∑

k=1

[
b, c, d

q/b, q/c, q/d

∣∣∣ q
]

k

( q

bcd

)k

+
+∞∑

k=1

[
b, c, d

q/b, q/c, q/d

∣∣∣ q
]

−k

( q

bcd

)−k

=
+∞∑

k=−∞

[
b, c, d

q/b, q/c, q/d

∣∣∣ q
]

k

( q

bcd

)k

.

In terms of bilateral series, this becomes the following well-poised summa-
tion identity

3ψ3

[
b, c, d
q/b, q/c, q/d

∣∣∣ q; q

bcd

]
=

[
q, q/bc, q/bd, q/cd
q/b, q/c, q/d, q/bcd

∣∣∣ q
]

∞
(F4.5)

whose reversal reads as

3ψ3

[
b, c, d
q/b, q/c, q/d

∣∣∣ q; q
2

bcd

]
=

[
q, q/bc, q/bd, q/cd
q/b, q/c, q/d, q/bcd

∣∣∣ q
]

∞
. (F4.6)
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In view of the fact that

(qw; q)k

(w; q)k
=

1−wqk

1−w
=

1
1− w

− w

1− w
qk

the linear combination of (F4.5) and (F4.6) leads us to bilateral identity
(F4.2) with an extra w-parameter:

4ψ4

[
qw, b, c, d
w, q/b, q/c, q/d

∣∣∣ q; q

bcd

]
=

[
q, q/bc, q/bd, q/cd
q/b, q/c, q/d, q/bcd

∣∣∣ q
]

∞
.

F4.2. Proof of (F4.3-F4.4). Instead, if taking a = q in non-terminating
very-well-poised 6φ5 summation identity (E7.4a-E7.4b) and then multiply-
ing both sides by 1− q, we get
[
q, q2/bc, q2/bd, q2/cd
q2/b, q2/c, q2/d, q2/bcd

∣∣∣q
]

∞
=

+∞∑

k=0

{
1−q1+2k

}[
b, c, d

q2/b, q2/c, q2/d

∣∣∣ q
]

k

( q2

bcd

)k

=
+∞∑

k=0

[
b, c, d

q2/b, q2/c, q2/d

∣∣∣ q
]

k

( q2

bcd

)k

−
+∞∑

k=1

[
b, c, d

q2/b, q2/c, q2/d

∣∣∣ q
]

−k

( q2

bcd

)−k

=
+∞∑

k=−∞

[
b, c, d

q2/b, q2/c, q2/d

∣∣∣ q
]

k

( q2

bcd

)k

where we have performed the summation index substitution k → k − 1 for
the second sum.

In terms of bilateral series, this reads as the following well-poised summation
identity

3ψ3

[
b, c, d

q2/b, q2/c, q2/d

∣∣∣ q; q
2

bcd

]
=

[
q, q2/bc, q2/bd, q2/cd
q2/b, q2/c, q2/d, q2/bcd

∣∣∣ q
]

∞
. (F4.7)

Shifting the summation index by k→ k−1 and then performing parameter
replacement b → qb, c → qc and d → qd, we can derive the following
equivalent result:

3ψ3

[
b, c, d

1/b, 1/c, 1/d

∣∣∣ q; q
−1

bcd

]
=
−1
q

[
q, 1/bc, 1/bd,1/cd

1/b, 1/c, 1/d, q−1/bcd

∣∣∣ q
]

∞
. (F4.8)

Its reversal can be stated, after some little modification, as

3ψ3

[
b, c, d

1/b, 1/c, 1/d

∣∣∣ q; q

bcd

]
=

[
q, 1/bc, 1/bd, 1/cd

1/b, 1/c, 1/d, q−1/bcd

∣∣∣ q
]

∞
. (F4.9)
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Note further that

3ψ3

[
b, c, d

1/b, 1/c, 1/d

∣∣∣ q; 1
bcd

]
= 0 (F4.10)

which is the case κ = 1 of the following general statement:

1+2κψ2κ+1

[
c1, c2, · · · , c1+2κ

1/c1, 1/c2, · · · , 1/c1+2κ

∣∣∣ q; 1
c1c2 · · · c1+2κ

]
= 0. (F4.11)

In fact, denote by Θ the bilateral ψ-series on the left hand side. Its reversal
with the summation index shifted by k → k − 1 can be stated as

Θ = 1+2κψ2κ+1

[
qc1, qc2, · · · , qc1+2n

q/c1, q/c2, · · · , q/c1+2κ

∣∣∣ q;
1+2κ∏

ι=1

1
cι

]

= 1+2κψ2κ+1

[
c1, c2, · · · , c1+2κ

1/c1, 1/c2, · · · , 1/c1+2κ

∣∣∣ q;
1+2κ∏

ι=1

1
cι

]

×
1+2κ∏

ι=1

1− 1/cι
1− cι

{ 1+2κ∏

ι=1

1
cι

}−1

.

Simplifying the last factor-product, we find that

Θ = (−1)1+2κΘ = 0

which is exactly (F4.11).

By means of three terms relation

(qu; q)k

(u; q)k

(qv; q)k

(v; q)k
=

1− uqk

1− u
1− vqk

1− v

=
1

(1− u)(1− v) −
u+ v

(1 − u)(1− v)q
k +

uv

(1 − u)(1− v)q
2k

we can establish from the combination of (F4.8), (F4.9) and (F4.10) the
following general identity with two extra free-parameters:

5ψ5

[
qu, qv, b, c, d
u, v, 1/b, 1/c, 1/d

∣∣∣ q; q
−1

bcd

]
=

1− 1/quv
(1− 1/u) (1− 1/v)

×
[
q, 1/bc, 1/bd, 1/cd
q/b, q/c, q/d, q−1/bcd

∣∣∣ q
]

∞

which is the bilateral identity stated in (F4.3-F4.4).

F4.3. q-Analogue of Dixon’s theorem. Putting b = c = d = q−n in
(F4.5), we can state the result in terms of q-binomial sum

n∑

k=−n

(−1)k
[ 2n
n+ k

]3

qk(3k−1)/2 =
(q; q)3n

(q; q)3n
(F4.12)

which is the q-analogue of (F4.1) corresponding to δ = 0.
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Similarly, taking b = c = d = q−n in (F4.7), we can express the result as
another q-binomial sum

1+n∑

k=−n

(−1)k
[1 + 2n
n+ k

]3

qk(3k−1)/2 =
(q; q)1+3n

(q; q)3n
(F4.13)

which is the q-analogue of (F4.1) corresponding to δ = 1.

F5. Partial fraction decomposition method

For terminating hypergeometric series with integral differences between nu-
merator parameters and denominator parameters, an interesting identity
was first discovered by Minton (1970) and slightly extended by Karlsson
(1971). Their q-analogue was then established by Gasper (1984). The bi-
lateral non-terminating forms of these formulae have been found by Chu
(1994), who has further generalized these results into basic bilateral very
well-poised hypergeometric summation identities.

The purpose of this section is to present the formulae of Chu-Karlsson-
Minton for basic hypergeometric series with integral parameter differences.
For the terminating cases and their dual formulae, refer to Chu (1998).

F5.1. Theorem. For complex numbers a, c, d, and {xk}`k=1 with λ and
{nk}`k=1 being nonnegative integers and n =

∑`
k=1 nk, there holds the bi-

lateral series identity with integral parameter differences

`+2ψ2+`

[
a, d, qn1x1, qn2x2, · · · , qn`x`

c, qd, x1, x2, · · · , x`

∣∣∣ q; q1−λ/a

]
(F5.1a)

=
[
q, q, c/d, qd/a
q/a, c, qd, q/d

∣∣∣ q
]

∞
dλ

∏̀

k=1

(xk/d; q)nk

(xk; q)nk

(F5.1b)

provided that (|q/a| < |qλ| < |qn/c|). This identity contains, in particular,
the results due to Gasper [33] on unilateral q-series as special cases.

Proof. Consider the function of complex variable z defined in terms of
q-shifted factorials by

f(z) = z1+λ

[
q, q, c/z, qz/a
c, q/a, z, q/z

∣∣∣ q
]

∞

∏̀

k=1

(xk/z; q)nk

(xk; q)nk

. (F5.2)
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It is not hard to verify that f(z) has simple poles z = qj for j = 0,±1,±2, · · ·
with residues

−
{
q−1−λ/a

}j (a; q)j

(c; q)j

∏̀

k=1

(qnkxk; q)j

(xkc; q)j
. (F5.3)

Denote by δm and ∂m the circles with the center at the origin and radii
|q|m+1/2 and |q|−m−1/2, respectively. It is clear that there is no pole of f(z)
passing through δm or ∂m. Then the residue theorem (cf. [58, §3.1]) states
that

f(z)
z

+
∑

τ

Res [f(z)]z=τ

τ (τ − z) =
1

2πi

∫

∂m

f(t)
t (t − z)dt (F5.4a)

− 1
2πi

∫

δm

f(t)
t (t− z)

dt (F5.4b)

where the summation runs over all poles {τ} of f(z) between contours δm
and ∂m. For sufficiently large m, we can estimate that

∫

δm

f(t)
t(t − z) dt = O

{
q(1+λ−n)m (q−m−1/2c; q)m

(q−m+1/2; q)m

}
(F5.5a)

= O
(
|qλ−nc|m

)
(F5.5b)

∫

∂m

F (t)
t(t − z) dt = O

{
q−mλ (q−m+1/2/a; q)m

(q−m−1/2; q)m

}
(F5.5c)

= O
(
|q1−λ/a|m

)
. (F5.5d)

When |q/a| < |qλ| < |qn/c|, both integrals displayed in (F5.4a-F5.4b) tend
to zero as m → ∞. Therefore we can express (F5.4a-F5.4b) as a bilateral
summation identity:

`+2ψ2+`

[
a, z, qn1x1, qn2x2, · · · , qn`x`

c, qz, x1, x2, · · · , x`

∣∣∣ q; q1−λ/a

]

=
[
q, q, c/z, qz/a
q/a, c, qz, q/z

∣∣∣ q
]

∞
zλ

∏̀

k=1

(xk/z; q)nk

(xk; q)nk

whose convergent condition coincides with |q/a| < |qλ| < |qn/c|. Rewriting
the last identity with z being replaced by d, we confirm the formula displayed
in (F5.1a-F5.1b). �

Two interesting special cases of (F5.1a-F5.1b) are worth to mention:

3ψ3

[
a, qx, z
c, x, qz

∣∣∣ q; q/a
]

=
1− x/z
1− x

[
q, q, c/z, qz/a
c, q/a, qz, q/z

∣∣∣ q
]

(F5.6a)

3ψ3

[
a, qx, z
c, x, qz

∣∣∣ q; 1/a
]

=
1− z/x
1− 1/x

[
q, q, c/z, qz/a
c, q/a, qz, q/z

∣∣∣ q
]

(F5.6b)
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where their convergence conditions are given respectively by |c| < |q| < |a|
and |c| < 1 < |a|.

F5.2. Corollary. Replacing each parameter by its q-exponential in equa-
lity (F5.1a-F5.1b) and then letting q→ 1, we can state the limit as bilateral
hypergeometric summation formula (n+<(a − c) < 0):

`+2H2+`

[
a, d, x1 + n1, x2 + n2, · · · , x` + n`

c, 1 + d, x1, x2, · · · , x`

∣∣∣ 1
]

(F5.7a)

= Γ
[

1− a, c
1− a+ d, c− d

]
πd

sinπd

∏̀

k=1

(xk − d)nk

(xk)nk

. (F5.7b)

This generalizes the identity due to Karlsson [46]

`+2F1+`

[
a, d, x1 + n1, x2 + n2, · · · , x` + n`

1 + d, x1, x2, · · · , x`

∣∣∣ 1
]

(F5.8a)

=
Γ(1− a)Γ(1 + d)

Γ(1− a+ d)

∏̀

k=1

(xk − d)nk

(xk)nk

, (n +<(a) < 1) (F5.8b)

which is a non-terminating extension of an earlier result due to Minton [50].

F5.3. Transformation of bilateral series into unilateral series. For
|w| < 1, recalling the q-Gauss summation formula

(z; q)k

(wz; q)k
=

1
1− zqk

[
z, w
q, wz

∣∣∣ q
]

∞
2φ1

[
q/w, qkz
q1+kz

∣∣∣ q;w
]

we can consider the series composition (|q/a| < |qλ| < |q1+n/cw|):

`+2ψ2+`

[
a, z, qn1x1, q

n2x2, · · · , qn`x`

c, wz, x1, x2, · · · , x`

∣∣∣ q; q1−λ/a

]
×

[
q, wz
z, w

∣∣∣ q
]

∞

=
+∞∑

k=−∞

(
q1−λ/a

)k

1− zqk

[
a, {qnκxκ}
c, {xκ}

∣∣∣ q
]

k
2φ1

[
q/w, qkz
q1+kz

∣∣∣ q;w
]

=
+∞∑

i=0

wi

1−zqi

(q/w; q)i

(q; q)i

+∞∑

k=−∞

[
a, qiz, {qnκxκ}
c, q1+iz, {xκ}

∣∣∣ q
]

k

(
q1−λ/a

)k
.

Under the condition |q/a| < |qλ| < |qn/c|, the last series can be evaluated
by (F5.1a-F5.1b) as
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`+2ψ2+`

[
a, qiz, qn1x1, qn2x2, · · · , qn`x`

c, q1+iz, x1, x2, · · · , x`

∣∣∣ q; q1−λ/a

]

=
[
q, q, q−ic/z, q1+iz/a
q/a, c, q1+iz, q1−i/z

∣∣∣ q
]

∞
qiλzλ

∏̀

k=1

(
q−ixk/z; q

)
nk

(xk; q)nk

=
[
q, q, c/z, qz/a
q/a, c, qz, q/z

∣∣∣ q
]

∞
zλ

∏̀

k=1

(xk/z; q)nk

(xk; q)nk

×
(
qλ−1−nc

)i
[
qz/c, qz
qz/a, z

∣∣∣ q
]

i

∏̀

k=1

(qz/xk; q)i

(q1−nkz/xk; q)i

.

Substituting this result into the last expression, we get the following trans-
formation:

`+2ψ2+`

[
a, z, qn1x1, qn2x2, · · · , qn`x`

c, wz, x1, x2, · · · , x`

∣∣∣ q; q1−λ/a

]
(F5.9a)

=
[
q, w, c/z, qz/a
q/a, c, wz, q/z

∣∣∣ q
]

∞
zλ

∏̀

k=1

(xk/z; q)nk

(xk; q)nk

(F5.9b)

× `+2φ1+`

[
q/w, qz/c,

{
qz/xκ

}

qz/a,
{
q1−nκz/xκ

}
∣∣∣ q; qλ−1−ncw

]
(F5.9c)

provided that |q/a| < |qλ| < |q1+n/cw|, which guarantees that both non-
terminating series are convergent.

When q → 1, we write down the transformation for ordinary hypergeometric
series (1 + n+<(a − c) < 1 ≤ <(w)):

`+2H2+`

[
a, z, n1 + x1, n2 + x2, · · · , n` + x`

c, w + z, x1, x2, · · · , x`

∣∣∣ 1
]

= Γ
[
1− a, c, w+ z, 1− z
w, c− z, 1− a + z

] ∏̀

k=1

(xk − z)nk

(xk)nk

× `+2F1+`

[
1− w, 1− c + z,

{
1 + z − xκ

}

1− a + z,
{
1 + z − xκ − nκ

}
∣∣∣ 1

]
.

In particular, putting n = 0 and then evaluating the 2φ1-series by the Gauss
summation theorem, we recover the well-known Dougall formula:

2H2

[
a, b
c, d

∣∣∣ 1
]

= Γ
[
1− a, 1− b, c, d, c+ d− a− b− 1

c− a, c− b, d− a, d− b

]

provided that <(c+d−a−b) > 1 for the convergence of the bilateral series.
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F5.4. Bilateral basic very-well-poised summation formula. The par-
tial decomposition method can further be applied to derive the following
bilateral very-well-poised summation formula (Chu, 1998).

For complex numbers a, b, c, d, and {xk, yk}`k=1 satisfying xkyk = aq1+nk

(k = 1, 2, · · · , `) with {nk}`k=1 being nonnegative integers and n =
∑`

k=1 nk,
there holds

2`+6ψ6+2`

[
q
√
a,−q

√
a, b, c, d, a/d,

{
xk, yk

}
√
a, −
√
a, qa/b, qa/c, qa/d, qd,

{
qa/xk,qa/yk

}
∣∣∣q; q1−na

bc

]
(F5.10a)

=
[
q, q, qa, q/a, qa/bd, qa/cd, qd/b, qd/c
qa/d, qd/a, qd, q/d, q/b, q/c, qa/b, qa/c

∣∣∣ q
]

∞
(F5.10b)

× (a/d)n
∏̀

k=1

[
qd/xk, qd/yk

qa/xk, qa/yk

∣∣∣ q
]

nk

(F5.10c)

provided that |q1−na/bc| < 1 and the bilateral series is well-defined.

Proof. Consider the meromorphic function of complex variable z defined
by

F (z) =
[
q, q, a, q/a, qa/bz, qa/cz, qz/b, qz/c
a/z, qz/a, z, q/z, q/b, q/c, qa/b, qa/c

∣∣∣ q
]

∞
(F5.11a)

× (a/z)n
∏̀

k=1

[
qz/xk, qz/yk

qa/xk, qa/yk

∣∣∣ q
]

nk

. (F5.11b)

We can check without difficulty that F (z) satisfies the multiplicative re-
flection property F (z) = F (a/z). It has simple poles z = qj and z = aqj

(j = 0,±1,±2, · · ·) with residues

{qa
bc

}j
[

b, c
qa/b, qa/c

∣∣∣ q
]

j

∏̀

k=1

[
xk, yk

qa/xk, qa/yk

∣∣∣ q
]

j

(F5.12a)

×

{
−q−j(1+n) at z = q−j

+aqj(1−n) at z = aqj .
(F5.12b)

Write |a| = |q|A and A = ε (mod 1). Denote by δm and ∂m the circles with
the center at the origin and radii |q|m+(1+ε)/2 and |q|−m+(1+ε)/2, respec-
tively. It is clear that there is no pole of F (z) passing through δm or ∂m.
Then the residue theorem (cf. [58, §3.1]) states that

F (z)
z

+
∑

τ

Res [F (z)]z=τ

τ (τ − z) =
1

2πi

∫

∂m

F (t)
t (t− z)dt (F5.13a)

− 1
2πi

∫

δm

F (t)
t (t − z)

dt (F5.13b)
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where the summation runs over all poles {τ} of F (z) between contours δm
and ∂m. For sufficiently large m, we can estimate that

∫

δm

F (t)
t(t − z)dt = O

{
q−mn

[
q−m+(1−ε)/2 a/b,q−m+(1−ε)/2a/c

q−m+(1−ε)/2 ,q−m−(1+ε)/2a

∣∣∣ q
]

m

}
(F5.14a)

= O
{
(q1−na/bc)m

}
(F5.14b)

∫

∂m

F (t)
t(t − z)dt = O

{
qm−mn

[
q−m+(3+ε)/2 /b,q−m+(3+ε)/2/c

q−m+(1+ε)/2 ,q−m+(3+ε)/2 /a

∣∣∣ q
]

m

}
(F5.14c)

= O
{
(q2−na/bc)m

}
. (F5.14d)

Note first that for m → ∞, both integrals displayed in (F5.13a-F5.13b)
tend to zero under condition |q1−na/bc| < 1. Write then the residue-sum
displayed on the left hand side of (F5.13a) explicitly

∑

τ

Res [F (z)]z=τ

τ (τ − z) =
+∞∑

j=−∞

{qa
bc

}j
[

b, c
qa/b, qa/c

∣∣∣ q
]

j

∏̀

k=1

[
xk, yk

qa/xk, qa/yk

∣∣∣ q
]

j

×
{

aqj(1−n)

aqj(aqj − z)
− q−j(1+n)

q−j(q−j − z)

}

where the difference of two fractions in the last line can be simplified as

aqj(1−n)

aqj(aqj − z) −
q−j(1+n)

q−j(q−j − z) =
−(1 − q2ja)q−jn

z(1− qjz)(1 − qja/z)
.

We can therefore reformulate the limit of integral-sum (F5.13a-F5.13b) as
the following bilateral series identity:

F (z)
(1− z)(1 − a/z)

1− a =
+∞∑

j=−∞

1− z
1− qjz

1− a/z
1− qja/z

[
b, c

qa/b, qa/c

∣∣∣ q
]

j

×
1− q2ja

1− a
∏̀

k=1

[
xk, yk

qa/xk, qa/yk

∣∣∣ q
]

j

{q1−na

bc

}j

where the bilateral series on the right converges under the same condition
|q1−na/bc| < 1.

Replacing z by d, we see that this identity becomes exactly the basic very
well-poised bilateral hypergeometric formula (F5.10a-F5.10b). Unfortu-
nately, this very well-poised evaluation is not a proper extension of (F5.1),
even though we have expected that. �
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Remark When n = 0, we recover from the formula (F5.10a-F5.10b-F5.10c)
a special case of Bailey’s bilateral 6ψ6-series identity (

∣∣qa2/bcde
∣∣ < 1):

6ψ6

[
q
√
a, −q

√
a, b, c, d, e√

a, −
√
a, qa/b, qa/c, qa/d, qa/e

∣∣∣ q; qa
2

bcde

]

=
[
q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣ q
]

∞
.

F5.5. Ordinary hypergeometric counterparts. For q → 1, we derive
from the limit of the last bilateral basic hypergeometric series identity the
ordinary hypergeometric summation formula.

For complex numbers a, b, c, d, and {xk, yk}`k=1 satisfying the condition
xk + yk = 1 + a + nk (k = 1, 2, · · · , `) with {nk}`k=1 being nonnegative
integers and n =

∑`
k=1 nk, there holds

2`+5H5+2`

[
1 + a

2 , b, c, d, a− d, {xk, yk}
a
2 , 1+a−b, 1+a−c, 1+a−d, 1 + d, {1+a−xk,1+a−yk}

∣∣∣ 1
]

(F5.15a)

=
sinπa
πa

πd

sinπd
π(a− d)

sinπ(a− d)
∏̀

k=1

[
1 + d− xk, 1 + d− yk

1 + a− xk, 1 + a− yk

]

nk

(F5.15b)

× Γ
[

1 + a− b, 1 + a− c, 1− b, 1− c
1 + a− b− d, 1 + a− c− d, 1− b+ d, 1− c+ d

]
(F5.15c)

provided that n +<(b+ c− a) < 1 and the bilateral series is well-defined.

The Chu-Karlsson-Minton formulae (F5.7-F5.8) may be regarded as its limi-
ting case of a →∞ after replacing c by 1 + a − c. When n = 0, it reduces
to a special case of the Dougall formula (cf. [56, §6.1]):

5H5

[
1 + a

2 , b, c, d, e
a
2 , 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e

∣∣∣ 1
]

(F5.16a)

= Γ
[

1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e
1 + a − b− c, 1 + a− b− d, 1 + a− c− d, 1− a

]
(F5.16b)

× Γ
[

1− b, 1− c, 1− d, 1− e, 1 + 2a− b− c − d− e
1 + a − b− e, 1 + a − c− e, 1 + a− d− e, 1 + a

]
(F5.16c)

where <(1 + 2a− b− c− d− e) > 0.




