Chapter V

Groups of Lie type

1 Lie Algebras

Our main references here will be [10] and the book of R. Carter[5].
(1.1) Definition A Lie algebra L is a vector space L, over a field \mathbb{F}, endowed with a bilinear map $L \times L \rightarrow L$:

$$
(x, y) \mapsto[x y] \quad \text { (Lie product) }
$$

for which the following conditions hold. For all $x, y, z \in L$:
(1) $[x x]=0$;
(2) $[x[y z]]+[y[z x]]+[z[x y]]=0$ (Jacobi identity).

By (1) any Lie product is anticommutative, namely $[x y]=-[y x]$. Indeed:

$$
0=[(x+y)(x+y)]=[x x]+[x y]+[y x]+[y y]=[x y]+[y x] .
$$

(1.2) Definition Let $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of L over \mathbb{F}. The structure constants of L (with respect to \mathcal{B}) are the elements $a_{i j}^{k} \in \mathbb{F}$ defined by:

$$
\left[x_{i} x_{j}\right]=\sum_{k=1}^{n} a_{i j}^{k} x_{k} .
$$

Every Lie product over L is determined by its structure constants by the bilinearity.

(1.3) Definition

(1) A subspace I of L is called an ideal if $[i x] \in I$ for all $i \in I, x \in L$;
(2) L is simple if $L \neq\{0\}$ and it has no proper ideal.
(1.4) Definition A linear map $\delta: L \rightarrow L$ is called a derivation if it satisfies

$$
\delta([y z])=[\delta(y) z]+[y \delta(z)], \forall y, z \in L
$$

(1.5) Example For each $x \in L$ the derivation $\operatorname{ad} x: L \rightarrow L$ defined by:

$$
\operatorname{ad} x(y):=[x y], \forall y \in L
$$

The linearity of ad x is an immediate consequence of the bilinearity of the Lie product. The map ad x is a derivation by axioms (1) and (2) of Definition 1.1 of Lie product.
(1.6) Definition Let L, L^{\prime} be Lie algebras over $\mathbb{F} . A \operatorname{map} \varphi: L \rightarrow L^{\prime}$ is called a homomorphism if, for all $x, y \in L$:

$$
\varphi([x y])=[\varphi(x) \varphi(y)] .
$$

An isomorphism is a bijective homomorphism. An isomorphism $\varphi: L \rightarrow L$ is called an automorphism of L. The group of automorphisms of L is indicated by $\operatorname{Aut}(L)$.

2 Linear Lie Algebras

An associative algebra A, over a field \mathbb{F}, is a ring A, which is a vector space over \mathbb{F}, satisfying the following axiom. For all $\lambda \in \mathbb{F}$ and for all $x, y \in A$:

$$
\lambda(x y)=(\lambda x) y=x(\lambda y)
$$

(2.1) Lemma Let A be an associative algebra over \mathbb{F}. Then A is a Lie algebra with respect to the product defined by:

$$
\begin{equation*}
[x, y]:=x y-y x, \quad \forall x, y \in A \tag{2.2}
\end{equation*}
$$

Proof Routine calculation.
(2.3) Definition Let V be a vector space over \mathbb{F}.
(1) The associative algebra $\operatorname{End}_{\mathbb{F}}(V)$, considered as a Lie algebra with respect to the product (2.2), is called the general linear Lie algebra and indicated by $\mathcal{G} \mathcal{L}(V)$;
(2) the matrix algebra $\operatorname{Mat}_{n}(\mathbb{F})$, considered as a Lie algebra with respect to (2.2), is indicated by $\mathcal{G} \mathcal{L}_{n}(\mathbb{F})$;
(3) $\mathcal{G} \mathcal{L}_{n}(\mathbb{F})$ and its subalgebras are called the linear Lie algebras.

Let \mathcal{B} be a fixed basis of $V=\mathbb{F}^{n}$. The map $\Phi_{\mathcal{B}}: \mathcal{G} \mathcal{L}(V) \simeq \mathcal{G} \mathcal{L}_{n}(\mathbb{F})$ such that $\Phi_{\mathcal{B}}(\alpha)$ is the matrix of α with respect to \mathcal{B} is an isomorphism of Lie algebras. Thus:

$$
\mathcal{G \mathcal { L }}\left(\mathbb{F}^{n}\right) \simeq \mathcal{G} \mathcal{L}_{n}(\mathbb{F})
$$

A basis of $\mathcal{G} \mathcal{L}_{n}(\mathbb{F})$ consists of the matrices having 1 in one position and 0 elsewhere, namely the matrices:

$$
\left\{e_{i j} \mid 1 \leq i, j \leq n\right\}
$$

The structure constants, with respect to this basis, are all ± 1 or 0 . More precisely:

$$
\begin{equation*}
\left[e_{i j}, e_{k \ell}\right]:=e_{i j} e_{k \ell}-e_{k \ell} e_{i j}=\delta_{j k} e_{i \ell}-\delta_{\ell i} e_{k j} . \tag{2.4}
\end{equation*}
$$

Conjugation by a fixed element of $\mathrm{GL}_{n}(\mathbb{F})$ is an automorphism of the associative algebra $\operatorname{Mat}_{n}(\mathbb{F})$ and also of the Lie algebra $\mathcal{G} \mathcal{L}_{n}(\mathbb{F})$, as shown in the following:
(2.5) Lemma For a fixed $g \in \mathrm{GL}_{n}(\mathbb{F})$, let $\gamma_{g}: \mathcal{G \mathcal { L }}_{n}(\mathbb{F}) \rightarrow \mathcal{G} \mathcal{L}_{n}(\mathbb{F})$ be defined by:

$$
\gamma_{g}(m):=g^{-1} m g, \quad \forall m \in \mathcal{G} \mathcal{L}_{n}(\mathbb{F}) .
$$

Then γ_{g} is an automorphism of the Lie algebra $\mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{F})$.
Proof γ_{g} is linear since, for all $m_{1}, m_{2}, m \in \mathrm{GL}_{n}(\mathbb{F}), \lambda \in \mathbb{F}$:

$$
\begin{aligned}
& g^{-1}\left(m_{1}+m_{2}\right) g=g^{-1} m_{1} g+g^{-1} m_{2} g \\
& g^{-1}(\lambda m) g=\lambda g^{-1} m g
\end{aligned} .
$$

γ_{g} preserves the Lie product, i.e., $\left[g^{-1} m_{1} g, g^{-1} m_{2} g\right]=g^{-1}\left[m_{1}, m_{2}\right] g$. In fact:

$$
g^{-1} m_{1} g g^{-1} m_{2} g-g^{-1} m_{2} g g^{-1} m_{1} g=g^{-1}\left(m_{1} m_{2}-m_{2} m_{1}\right) g .
$$

γ_{g} is bijective having $\gamma_{g^{-1}}$ as its inverse.
(2.6) Lemma The trace map $\operatorname{tr}: \mathcal{G} \mathcal{L}_{n}(\mathbb{F}) \rightarrow \mathcal{G} \mathcal{L}_{1}(\mathbb{F})$ is a Lie algebras homomorphism. In particular its kernel is a subalgebra, indicated by \mathbf{A}_{ℓ}.

Proof For all $a, b \in \mathcal{G} \mathcal{L}_{n}(\mathbb{F}), \lambda \in \mathbb{F}$:
$\operatorname{tr}(a+b)=\operatorname{tr}(a)+\operatorname{tr}(b)$,
$\operatorname{tr}(\lambda a)=\lambda \operatorname{tr}(a)$,
$\operatorname{tr}([a, b])=\operatorname{tr}(a b-b a)=\operatorname{tr}(a b)-\operatorname{tr}(b a)=0=[\operatorname{tr}(a), \operatorname{tr}(b)]$.

3 The classical Lie algebras

We give an explicit description of the classical Lie algebras over \mathbb{C}.

3.1 The special linear algebra \mathbf{A}_{ℓ}

\mathbf{A}_{ℓ} is the subalgebra of $\mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{C})$ consisting of the matrices of trace 0 , namely the kernel of the trace homomorphism $\operatorname{tr}: \mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{C}) \rightarrow \mathcal{G} \mathcal{L}_{1}(\mathbb{C})$.

A basis of \mathbf{A}_{ℓ} is given by the matrices:

$$
\begin{equation*}
\left\{e_{i, i}-e_{i+1, i+1} \mid 1 \leq i \leq \ell\right\} \cup\left\{e_{i j} \mid 1 \leq i \neq j \leq \ell+1\right\} . \tag{3.1}
\end{equation*}
$$

Thus, for the dimension of the special linear algebra, we get:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}}\left(\mathbf{A}_{\ell}\right)=(\ell+1) \ell+\ell=\ell^{2}+2 \ell . \tag{3.2}
\end{equation*}
$$

(3.3) Theorem $\mathrm{PGL}_{\ell+1}(\mathbb{C}) \leq \operatorname{Aut}\left(\mathbf{A}_{\ell}\right)$.

Proof By Lemma 2.5, for all $g \in \mathrm{GL}_{\ell+1}(\mathbb{C})$, the inner automorphism

$$
\gamma_{g}: \mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{C}) \rightarrow \mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{C})
$$

is an automorphism of the Lie algebra $\mathcal{G} \mathcal{L}_{\ell+1}(\mathbb{C})$. For all $m \in \mathbf{A}_{\ell}$ we have $\operatorname{tr}\left(\gamma_{g}(m)\right)=$ $\operatorname{tr}(m)=0$, i.e., $\gamma_{g}\left(\mathbf{A}_{\ell}\right) \leq \mathbf{A}_{\ell}$. Since \mathbf{A}_{ℓ} has finite dimension and γ_{g} is injective, we get $\gamma_{g}\left(\mathbf{A}_{\ell}\right)=\mathbf{A}_{\ell}$. So the restriction of γ_{g} to \mathbf{A}_{ℓ} is an automorphism of \mathbf{A}_{ℓ}. Hence we may consider the homomorphism $\gamma: \mathrm{GL}_{\ell+1}(\mathbb{C}) \rightarrow \operatorname{Aut}\left(\mathbf{A}_{\ell}\right)$ defined by: $g \mapsto \gamma_{g}$. The kernel of γ is the subgroup Z of scalar matrices. We conclude that:

$$
\operatorname{PGL}_{\ell+1}(\mathbb{C}):=\frac{\mathrm{GL}_{\ell+1}(\mathbb{C})}{Z} \simeq \operatorname{Im} \gamma \leq \operatorname{Aut}\left(\mathbf{A}_{\ell}\right) .
$$

3.2 The symplectic algebra C_{ℓ}

Let us consider the antisymmetric, non-singular matrix:

$$
s=\left(\begin{array}{cc}
0 & I_{\ell} \tag{3.4}\\
-I_{\ell} & 0
\end{array}\right) .
$$

The symplectic algebra \mathbf{C}_{ℓ} is the subalgebra of $\mathcal{G} \mathcal{L}_{2 \ell}(\mathbb{C})$ defined by:

$$
\mathbf{C}_{\ell}:=\left\{x \in \mathcal{G} \mathcal{L}_{2 \ell}(\mathbb{C}) \mid s x=-x^{T} s\right\}
$$

Partitioning x into $\ell \times \ell$ blocks, we have that $x \in \mathbf{C}_{\ell}$ if and only if it has shape:

$$
x=\left(\begin{array}{cc}
m & n \\
p & -m^{T}
\end{array}\right) \quad \text { with } \quad n=n^{T}, p=p^{T} \text { symmetric. }
$$

Thus, a basis of \mathbf{C}_{ℓ} is given by the matrices:

$$
\left\{\left.\left(\begin{array}{cc}
e_{i j} & 0 \tag{3.5}\\
0 & -e_{j i}
\end{array}\right) \right\rvert\, 1 \leq i, j \leq \ell\right\} \cup
$$

$$
\left\{\left.\left(\begin{array}{cc}
0 & e_{i i} \tag{3.6}\\
0 & 0
\end{array}\right) \right\rvert\, 1 \leq i \leq \ell\right\} \cup\left\{\left.\left(\begin{array}{cc}
0 & e_{i j}+e_{j i} \\
0 & 0
\end{array}\right) \right\rvert\, 1 \leq i<j \leq \ell\right\} \cup
$$

$$
\begin{equation*}
\{\text { the transposes of }(3.6)\} . \tag{3.7}
\end{equation*}
$$

So, for the dimension of the symplectic algebra, we obtain:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathbf{C}_{\ell}=\ell^{2}+\mathbf{2}\left(1+\frac{\ell(\ell-1)}{2}\right)=\mathbf{2} \ell^{2}+\ell \tag{3.8}
\end{equation*}
$$

(3.9) Theorem $\operatorname{PSp}_{\ell+1}(\mathbb{C}) \leq \operatorname{Aut}\left(\mathbf{C}_{\ell}\right)$.

Proof Let $\mathrm{Sp}_{2 \ell}(\mathbb{C})$ be the group of isometries of s in (3.4). Thus

$$
s g=\left(g^{-1}\right)^{T} s, \quad \forall g \in \operatorname{Sp}_{2 \ell}(\mathbb{C})
$$

Take γ_{g} as in Lemma 2.5. Then $\gamma_{g}(x)=g^{-1} x g \in \mathbf{C}_{\ell}$, for all $x \in \mathbf{C}_{\ell}$. Indeed:

$$
s\left(g^{-1} x g\right)=g^{T} s x g=g^{T}\left(-x^{T} s\right) g=-g^{T} x^{T}\left(g^{-1}\right)^{T} s=-\left(g^{-1} x g\right)^{T} s
$$

So the restriction of γ_{g} to \mathbf{C}_{ℓ} is an automorphism of \mathbf{C}_{ℓ}. Hence we may consider the homomorphism $\gamma: \operatorname{Sp}_{2 \ell}(\mathbb{C}) \rightarrow$ Aut $\left(\mathbf{C}_{\ell}\right)$ defined by: $g \mapsto \gamma_{g}$. The kernel of γ is the subgroup $\langle-I\rangle$ of symplectic scalar matrices. We conclude that:

$$
\operatorname{PSp}_{\ell+1}(\mathbb{C}):=\frac{\operatorname{Sp}_{2 \ell}(\mathbb{C})}{\langle-I\rangle} \simeq \operatorname{Im} \gamma \leq \operatorname{Aut}\left(\mathbf{C}_{\ell}\right)
$$

3.3 The orthogonal algebra B_{ℓ}

Let us consider the symmetric, non-singular matrix:

$$
s=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3.10}\\
0 & 0 & I_{\ell} \\
0 & I_{\ell} & 0
\end{array}\right) .
$$

The orthogonal algebra \mathbf{B}_{ℓ} is the subalgebra of $\mathcal{G} \mathcal{L}_{2 \ell+1}(\mathbb{C})$ defined by:

$$
\mathbf{B}_{\ell}:=\left\{x \in \mathcal{G}_{2 \ell+1}(\mathbb{C}) \mid s x=-x^{T} s\right\} .
$$

Partitioning x into blocks, one has that $x \in \mathbf{B}_{\ell}$ if and only if it has shape

$$
x=\left(\begin{array}{ccc}
0 & -v_{1}^{T} & -v_{2}^{T} \\
v_{2} & m & n \\
v_{1} & p & -m^{T}
\end{array}\right) \quad \text { with } \quad n=-n^{T}, p=-p^{T} \text { antisymmetric. }
$$

Thus the orthogonal algebra \mathbf{B}_{ℓ} has basis:

$$
\begin{gather*}
\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & e_{i j} & 0 \\
0 & 0 & -e_{j i}
\end{array}\right) \right\rvert\, 1 \leq i, j \leq \ell\right\} \cup \tag{3.11}\\
\left\{\left.\left(\begin{array}{ccc}
0 & -e_{i}^{T} & 0 \\
0 & 0 & 0 \\
e_{i} & 0 & 0
\end{array}\right) \right\rvert\, 1 \leq i \leq \ell\right\} \cup\left\{\left.\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & e_{i j}-e_{j i} \\
0 & 0 & 0
\end{array}\right) \right\rvert\, 1 \leq i<j \leq \ell\right\} \tag{3.12}
\end{gather*}
$$

$\cup\{$ the transposes of 3.12$\}$.
We conclude that the dimension of this orthogonal algebra is given by:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathbf{B}_{\ell}=\ell^{2}+2\left(l+\frac{\ell(\ell-1)}{2}\right)=2 \ell^{2}+\ell . \tag{3.13}
\end{equation*}
$$

(3.14) Theorem Let $G \leq \mathrm{GL}_{2 \ell+1}(\mathbb{C})$ be the group of isometries of s in (3.10). Then

$$
\frac{Z G}{Z} \leq \operatorname{Aut}\left(\mathbf{B}_{\ell}\right)
$$

where Z denotes the group of scalar matrices.
The proof is the same as that of Theorem 3.9.

3.4 The orthogonal algebra D_{ℓ}

Let us consider the symmetric, non-singular matrix:

$$
s=\left(\begin{array}{cc}
0 & I_{\ell} \tag{3.15}\\
I_{\ell} & 0
\end{array}\right)
$$

The orthogonal algebra \mathbf{D}_{ℓ} is the subalgebra of $\mathcal{G} \mathcal{L}_{2 \ell}(\mathbb{C})$ defined by:

$$
\mathbf{D}_{\ell}:=\left\{x \in \mathcal{G} \mathcal{L}_{2 \ell}(\mathbb{C}) \mid s x=-x^{T} s\right\}
$$

Partitioning x into blocks, one has that $x \in \mathbf{D}_{\ell}$ if and only if it has shape:

$$
x=\left(\begin{array}{cc}
m & n \\
p & -m^{T}
\end{array}\right) \quad \text { with } \quad n=-n^{T}, p=-p^{T} \text { antisymmetric. }
$$

Thus the orthogonal algebra \mathbf{D}_{ℓ} has basis:

$$
\begin{gather*}
\left\{\left.\left(\begin{array}{cc}
e_{i j} & 0 \\
0 & -e_{j i}
\end{array}\right) \right\rvert\, 1 \leq i, j \leq \ell\right\} \cup \tag{3.16}\\
\left\{\left.\left(\begin{array}{cc}
0 & e_{i j}-e_{j i} \\
0 & 0
\end{array}\right) \right\rvert\, 1 \leq i<j \leq \ell\right\} \cup\{\text { their transposes }\} . \tag{3.17}
\end{gather*}
$$

We conclude that the dimension of this orthogonal algebra is given by:

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathbf{D}_{\ell}=\ell^{\mathbf{2}}+\mathbf{2} \frac{\ell(\ell-\mathbf{1})}{\mathbf{2}}=\mathbf{2} \ell^{\mathbf{2}}-\ell \tag{3.18}
\end{equation*}
$$

(3.19) Theorem Let $G \leq \mathrm{GL}_{2 \ell}(\mathbb{C})$ be the group of isometries of s in (3.15). Then

$$
\frac{Z G}{Z} \leq \operatorname{Aut}\left(\mathbf{D}_{\ell}\right)
$$

where Z denotes the group of scalar matrices.
The proof is the same as that of Theorem 3.9.

4 Root systems

Let L be a finite dimensional simple Lie algebras over \mathbb{C}. By the classification due to Killing and Cartan, L is one of the 9 algebras denoted respectively by:

$$
\begin{equation*}
\mathbf{A}_{\ell}, \mathbf{B}_{\ell}, \mathbf{C}_{\ell}, \mathbf{D}_{\ell}, \mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}, \mathbf{F}_{4}, \mathbf{G}_{2} \tag{4.1}
\end{equation*}
$$

There exists a set $\Phi=\Phi(L)$ such that L admits a decomposition

$$
\begin{equation*}
L=\mathcal{H} \oplus \bigoplus_{r \in \Phi} L_{r} \quad \text { (Cartan decomposition) } \tag{4.2}
\end{equation*}
$$

where \mathcal{H} is an ℓ-dimensional abelian subalgebra (namely $\left[h_{1} h_{2}\right]=0$ for all $h_{1}, h_{2} \in \mathcal{H}$) and, for each $r \in \Phi$, the following conditions hold:
(1) $L_{r}=\mathbb{C} v_{r}$ for some $v_{r} \in L$, i.e., L_{r} is a 1 -dimensional space;
(2) $\left[h v_{r}\right]=r(h) v_{r}$ with $r(h) \in \mathbb{C}$, for all $h \in \mathcal{H}$;
(3) the map ad $v_{r}: L \rightarrow L$ is nilpotent;
(4) there exists a unique $s \in \Phi($ denoted by $-r)$ such that $0 \neq\left[v_{r} v_{s}\right] \in \mathcal{H}$.
(4.3) Remark Fix $y \in L$. Recalling that $\operatorname{ad} y(x):=[y x]$, for all $x \in L$, we have:

- $\operatorname{ad} h(\mathcal{H})=\{0\}$ for all $h \in \mathcal{H}$ since \mathcal{H} is abelian.
- v_{r} is an eigenvector of ad h, with eigenvalue $r(h)$, by point (2) above.

Every $r \in \Phi$ may be identified with the linear map $r: \mathcal{H} \rightarrow \mathbb{C}$ defined by $h \mapsto r(h)$. Clearly r is an element of the dual space \mathcal{H}^{*} of \mathcal{H}, by the bilinearity of the Lie product. Moreover different elements of Φ give rise to different maps. So:

$$
\Phi \subseteq \mathcal{H}^{*}
$$

Now, consider the bilinear, symmetric form: $L \times L \rightarrow \mathbb{C}$ defined by

$$
(x, y):=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y) \quad \text { (Killing form). }
$$

Since this form is non-degenerate, its restriction to $\mathcal{H} \times \mathcal{H}$ induces the isomorphism of vector spaces $\varphi: \mathcal{H} \rightarrow \mathcal{H}^{*}$ where, for each $\bar{h} \in \mathcal{H}$:

$$
\varphi(\bar{h})(h):=\operatorname{tr}(\operatorname{ad} \bar{h} \operatorname{ad} h), \quad \forall h \in \mathcal{H} .
$$

Identifying each $r \in \Phi$ with its preimage in \mathcal{H}, we may assume:

$$
\Phi \subseteq \mathcal{H}
$$

It can be shown that Φ contains a \mathbb{C}-basis

$$
\Pi=\left\{r_{1}, \ldots, r_{\ell}\right\} \quad \text { (fundamental system) }
$$

of \mathcal{H} such that every $r \in \Phi$:
(1) is a linear combination of elements in Π with rational coefficients;
(2) these coefficients are either all positive, or all negative.

Property (2) defines an obvious partition of Φ into positive and negative roots:

$$
\Phi=\Phi^{+} \dot{\cup} \Phi^{-} .
$$

By property (1), Φ is a subset of the real vector space:

$$
\mathcal{H}_{\mathbb{R}}:=\mathbb{R} r_{1} \oplus \cdots \oplus \mathbb{R} r_{\ell} \simeq \mathbb{R}^{\ell}
$$

$\mathcal{H}_{\mathbb{R}}$ is an euclidean space with respect to the Killing form as scalar product:

$$
(x, y):=\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y), \quad \forall x, y \in \mathcal{H}_{\mathbb{R}} .
$$

The length of a vector $x \in \mathcal{H}_{\mathbb{R}}$ and the angle $\widehat{x y}$ for $x, y \in \mathcal{H}_{\mathbb{R}} \backslash\{0\}$ are defined by:

$$
|x|:=\sqrt{(x, x)}, \quad \cos \widehat{x y}:=\frac{(x, y)}{|x||y|} .
$$

(4.4) Definition The numbers $A_{r s}$ are defined by:

$$
A_{r s}:=\frac{2(r, s)}{(r, r)}, \quad \forall r, s \in \Phi
$$

It turns out that all $A_{r s}$ are in \mathbb{Z}. In particular, if $r, s \in \Phi$ are linearly independent and $r+s \in \Phi$, then $A_{r s}=p-q$ where $0 \leq p, q \in \mathbb{N}$ and

$$
\begin{equation*}
-p r+s, \ldots, s, \ldots, q r+s \tag{4.5}
\end{equation*}
$$

is the longest chain of roots through s involving r.
(4.6) Example Take the root system Φ with $\Phi^{+}=\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2}\right\}$.

Set $s=r_{1}+r_{2}, t=2 r_{1}+r_{2}$.

r, s	Longest chain	p, q	$A_{r s}$
r_{1}, r_{2}	$r_{2}, r_{2}+r_{1}, r_{2}+2 r_{1}$	0,2	-2
$r_{1}, r_{1}+r_{2}$	$-r_{1}+\left(r_{1}+r_{2}\right),\left(r_{1}+r_{2}\right),\left(r_{1}+r_{2}\right) r_{1}$	1,1	0
$r_{1}, 2 r_{1}+r_{2}$	$-2 r_{1}+\left(2 r_{1}+r_{2}\right),-r_{1}+\left(2 r_{1}+r_{2}\right), t$	2,0	2
r_{2}, r_{1}	$r_{1}, r_{1}+r_{2}$	0,1	-1
$r_{2}, r_{1}+r_{2}$	$-r_{2}+\left(r_{1}+r_{2}\right),\left(r_{1}+r_{2}\right)$	1,0	1
$r_{2}, 2 r_{1}+r_{2}$	$2 r_{1}+r_{2}$	0,0	0.

The Cartan matrix of L, with respect to a basis $\left\{r_{1}, \ldots, r_{\ell}\right\}$ of $\mathcal{H}_{\mathbb{R}}$, is defined as:

$$
\begin{equation*}
A:=\left(\frac{2\left(r_{i}, r_{j}\right)}{\left(r_{i}, r_{i}\right)}\right), \quad 1 \leq i, j \leq \ell . \tag{4.7}
\end{equation*}
$$

A basis $\left\{r_{1}, \ldots, r_{\ell}\right\}$ of $\mathcal{H}_{\mathbb{R}}$ can be normalized into the basis $\left\{h_{r_{1}}, \ldots, h_{r_{\ell}}\right\}$, where:

$$
h_{i}:=\frac{2 r_{i}}{\left(r_{i}, r_{i}\right)}, 1 \leq i \leq \ell
$$

4.1 Root system of type A_{ℓ}

$\operatorname{Let}\left\{e_{1}, \ldots, e_{\ell+1}\right\}$ be an orthonormal basis of the euclidean space $\mathbb{R}^{\ell+1}$.
The following vectors of $\mathbb{R}^{\ell+1}$ form a fundamental system of type \mathbf{A}_{ℓ} :

$$
\Pi=\{\underbrace{-e_{1}+e_{2}}_{r_{1}}, \underbrace{-e_{2}+e_{3}}_{r_{2}}, \ldots, \underbrace{-e_{\ell}+e_{\ell+1}}_{r_{\ell}}\} .
$$

The full root system has order $\ell(\ell+1)$ and is as follows:

$$
\Phi=\underbrace{\left\{-e_{i}+e_{j}, \mid 1 \leq i<j \leq \ell+1\right\}}_{\Phi^{+}} \dot{\cup} \underbrace{\left\{e_{i}-e_{j}, \mid 1 \leq i<j \leq \ell+1\right\}}_{\Phi^{-}} .
$$

All roots $r \in \Phi$ have the same length $|r|=\sqrt{2}$ (for this root system).
Cartan matrix:

$$
\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & 0 & \ldots & 0 & -1 & 2
\end{array}\right)
$$

4.2 Root system of type B_{ℓ}

Let $\left\{e_{1}, \ldots, e_{\ell}\right\}$ be an orthonormal basis of the euclidean space \mathbb{R}^{ℓ}.
The following vectors form a fundamental system of type \mathbf{B}_{ℓ}

$$
\Pi=\{\underbrace{e_{1}-e_{2}}_{r_{1}}, \quad \underbrace{e_{2}-e_{3}}_{r_{2}}, \quad \ldots, \quad \underbrace{e_{\ell-1}-e_{\ell}}_{r_{\ell-1}}, \quad \underbrace{e_{\ell}}_{r_{\ell}}\} .
$$

The full root system has order $2 \ell^{2}$ and is as follows:

$$
\Phi=\underbrace{\left\{e_{i} \pm e_{j}, e_{i} \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{+}} \dot{\cup} \underbrace{\left\{-e_{i} \mp e_{j},-e_{i} \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{-}} .
$$

For all $r \in \Phi$ we have $|r| \in\{\sqrt{2}, 1\}$. So there are long and short roots. E.g. the r_{i}-s, $i \leq \ell-1$, are long, r_{ℓ} is short.

Cartan matrix:

$$
\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -1 & 2 & -1 \\
0 & 0 & 0 & \ldots & 0 & -2 & 2
\end{array}\right)
$$

4.3 Root system of type C_{ℓ}

Let $\left\{e_{1}, \ldots, e_{\ell}\right\}$ be an orthonormal basis of the euclidean space \mathbb{R}^{ℓ}.
The following vectors form a fundamental system of type \mathbf{C}_{ℓ}

$$
\Pi=\left\{\begin{array}{llll}
\underbrace{e_{1}-e_{2}}_{r_{1}}, & \underbrace{e_{2}-e_{3}}_{r_{2}}, & \cdots, & \underbrace{e_{\ell-1}-e_{\ell}}_{r_{\ell-1}}, \\
\underbrace{2 e_{\ell}}_{r_{\ell}}
\end{array}\right\} .
$$

The full root system has order $2 \ell^{2}$ and is as follows:

$$
\Phi=\underbrace{\left\{e_{i} \pm e_{j}, 2 e_{i} \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{+}} \dot{\cup} \underbrace{\left\{-e_{i} \mp e_{j},-2 e_{i}, \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{-}} .
$$

For all $r \in \Phi$ we have $|r| \in\{\sqrt{2}, 2\}$. Here the r_{i}-s, $i \leq \ell-1$, are short, r_{ℓ} is long. Cartan matrix:

$$
\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -1 & 2 & -2 \\
0 & 0 & 0 & \ldots & 0 & -1 & 2
\end{array}\right) .
$$

4.4 Root system of type D_{ℓ}

Let $\left\{e_{1}, \ldots, e_{\ell}\right\}$ be an orthonormal basis of the euclidean space \mathbb{R}^{ℓ}.
The following vectors form a fundamental system of type \mathbf{D}_{ℓ}

$$
\Pi=\{\underbrace{e_{1}-e_{2}}_{r_{1}}, \underbrace{e_{2}-e_{3}}_{r_{2}}, \cdots, \underbrace{e_{\ell-1}-e_{\ell}}_{r_{\ell-1}}, \underbrace{e_{\ell-1}+e_{\ell}}_{r_{\ell}}\} .
$$

The full root system has order $2 \ell(\ell-1)$ and is as follows:

$$
\Phi=\underbrace{\left\{e_{i} \pm e_{j} \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{+}} \dot{\cup} \underbrace{\left\{-e_{i} \mp e_{j} \mid 1 \leq i<j \leq \ell\right\}}_{\Phi^{-}} .
$$

As in the case of \mathbf{A}_{ℓ} all roots have the same length. For this system $|r|=\sqrt{2}$.
Cartan matrix:

$$
\left(\begin{array}{ccccccc}
2 & -1 & 0 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & -1 & 2 & -1 & -1 \\
0 & 0 & 0 & \ldots & -1 & 2 & 0 \\
0 & 0 & 0 & \ldots & -1 & 0 & 2
\end{array}\right) .
$$

5 Chevalley basis of a simple Lie algebra

Let $L=\mathcal{H} \oplus \bigoplus_{r \in \Phi} L_{r}$ be a simple Lie algebra over \mathbb{C}, with fundamental system Π. Chevalley has proved the existence of a basis of L

$$
\begin{equation*}
\left\{h_{r} \mid r \in \Pi\right\} \cup\left\{e_{r} \mid r \in \Phi\right\} \quad \text { (Chevalley basis) } \tag{5.1}
\end{equation*}
$$

where $\mathcal{H}=\bigoplus_{r \in \Pi} \mathbb{C} h_{r}$ and $L_{r}=\mathbb{C} e_{r}$ for each r, satisfying the following conditions:

- $\left[h_{r} h_{s}\right]=0$, for all $r, s \in \Pi$;
- $\left[h_{r} e_{s}\right]=A_{r s} e_{s}$, for all $r \in \Pi, s \in \Phi$, with $A_{r s}$ as in Definition 4.4;
- $\left[e_{r} e_{-r}\right]=h_{r}$, for all $r \in \Phi$;
- $\left[e_{r} e_{s}\right]=0$, for all $r, s \in \Phi, r+s \neq 0$ and $r+s \notin \Phi ;$
- $\left[e_{r} e_{s}\right]= \pm(p+1) e_{r+s}$, if $r+s \in \Phi$, with p as in (4.5).

In particular, with respect to a Chevalley basis, the multiplication constants of L are all in \mathbb{Z}, a crucial property for the definition of the groups of Lie type over any field \mathbb{F}.
(5.2) Lemma Suppose that L is linear and that \mathcal{H} consists of diagonal matrices. Then, for each $r \in \Phi$, we have $e_{-r}=e_{r}^{T}$.

Proof For all $h \in \mathcal{H}, \operatorname{ad} h\left(e_{r}\right)=h e_{r}-e_{r} h=r(h) e_{r}$. The condition $h=h^{T}$ gives:

$$
\operatorname{ad} h\left(e_{r}^{T}\right)=h e_{r}^{T}-e_{r}^{T} h=\left(e_{r} h-h e_{r}\right)^{T}=-r(h) e_{r}^{T} .
$$

(5.3) Example Chevalley basis of \mathbf{A}_{1}.

$$
\mathbf{A}_{1}=\mathbb{C} \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{h_{r_{1}}} \oplus \mathbb{C} \underbrace{\left.\mathbb{(} \begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)}_{e_{r_{1}}} \oplus \mathbb{C} \underbrace{\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)}_{e-r_{1}} .
$$

Let $h=\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right) \in \mathcal{H}$. With respect to the above basis:

$$
(\operatorname{ad} h)_{\mid\left\langle e_{r_{1}}, e_{-r_{1}}\right\rangle}=\left(\begin{array}{cc}
2 a & 0 \\
0 & -2 a
\end{array}\right) \Longrightarrow\left\{\begin{array}{ccc}
r_{1}(h) & =2 a \\
-r_{1}(h) & = & -2 a
\end{array}\right.
$$

Since $2 a=\operatorname{tr}\left(\operatorname{ad}\left(\begin{array}{cc}1 / 4 & 0 \\ 0 & -1 / 4\end{array}\right) \operatorname{ad} h\right)$, the Killing form allows the identification:

$$
r_{1}=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & -1 / 4
\end{array}\right) .
$$

Normalized basis of \mathcal{H} :

$$
h_{1}:=\frac{2 r_{1}}{\left(r_{1}, r_{1}\right)}=\frac{2 r_{1}}{\operatorname{tr}\left(\operatorname{ad} r_{1}\right)^{2}}=\frac{2}{1 / 2} r_{1}=4 r_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Root system: $\Phi=\left\{r_{1},-r_{1}\right\}$.
(5.4) Example Chevalley basis of \mathbf{A}_{2}.

$$
\mathbf{A}_{2}=\underbrace{\mathbb{C} h_{r_{1}} \oplus \mathbb{C} h_{r_{2}}}_{\mathcal{H}} \oplus \mathbb{C} e_{r_{1}} \oplus \mathbb{C} e_{r_{2}} \oplus \mathbb{C} e_{s} \oplus \mathbb{C} e_{-r_{1}} \oplus \mathbb{C} e_{-r_{2}} \oplus \mathbb{C} e_{-s}
$$

where:

$$
\begin{gathered}
h_{r_{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad h_{r_{2}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad e_{r_{1}}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{r_{2}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
e_{s}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{-r_{1}}=e_{r_{1}}^{T}, \quad e_{-r_{2}}=e_{r_{2}}^{T}, \quad e_{-s}=e_{s}^{T} .
\end{gathered}
$$

We justify and complete the notation. Let $h=\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a-b\end{array}\right) \in \mathcal{H}$.
With respect to the above ordered basis:

$$
\begin{aligned}
& \operatorname{ad} h_{\mid\left\langle e_{r_{1}}, e_{r_{2}}, e_{s}\right\rangle}=\left(\begin{array}{ccc}
a-b & 0 & 0 \\
0 & a+2 b & 0 \\
0 & 0 & 2 a+b++
\end{array}\right) \\
& \Longrightarrow\left\{\begin{array}{c}
r_{1}(h)=a-b \\
r_{2}(h=a+2 b \\
s(h)=2 a+b
\end{array}\right. \\
& \Longrightarrow \text { giving } \\
& \hline
\end{aligned} \begin{aligned}
& s=r_{1}+r_{2} .
\end{aligned}
$$

Since

$$
a-b=\operatorname{tr}\left(\operatorname{ad}\left(\begin{array}{ccc}
1 / 6 & 0 & 0 \\
0 & -1 / 6 & 0 \\
0 & 0 & 0
\end{array}\right) \operatorname{ad} h\right), \quad a+2 b=\operatorname{tr}\left(\operatorname{ad}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 6 & 0 \\
0 & 0 & -1 / 6
\end{array}\right) \operatorname{ad} h\right)
$$

the Killing form allows the identifications:

$$
r_{1}=\left(\begin{array}{ccc}
1 / 6 & 0 & 0 \\
0 & -1 / 6 & 0 \\
0 & 0 & 0
\end{array}\right), \quad r_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 / 6 & 0 \\
0 & 0 & -1 / 6
\end{array}\right)
$$

Normalized basis of $\mathcal{H}:\left\{\frac{2 r_{1}}{\left(r_{1}, r_{1}\right)}=h_{r_{1}}, \frac{2 r_{2}}{\left(r_{2}, r_{2}\right)}=h_{r_{1}}\right\}$ with $h_{r_{1}}, h_{r_{2}}$ as above.
Root system $\Phi=\Phi^{+} \cup \Phi^{-}$, with

$$
\Phi^{+}=\left\{r_{1}, r_{2}, r_{1}+r_{2}\right\}, \quad \Phi^{-}=\left\{-r_{1},-r_{2},-r_{1}-r_{2}\right\}
$$

(5.5) Example A fundamental system of \mathbf{A}_{ℓ} one may take the $\ell+1 \times \ell+1$ matrices

$$
e_{r_{1}}=e_{1,2}, \quad e_{r_{2}}=e_{2,3}, \quad \ldots, \quad e_{r_{\ell}}=e_{\ell, \ell+1}
$$

(5.6) Example Chevalley basis of $\mathbf{C}_{\mathbf{2}}$.
$\mathbf{C}_{2}=\underbrace{\mathbb{C} h_{r_{1}} \oplus \mathbb{C} h_{r_{2}}}_{\mathcal{H}} \oplus \mathbb{C} e_{r_{1}} \oplus \mathbb{C} e_{r_{2}} \oplus \mathbb{C} e_{s} \oplus \mathbb{C} e_{t} \oplus \mathbb{C} e_{-r_{1}} \oplus \mathbb{C} e_{-r_{2}} \oplus \mathbb{C} e_{-s} \oplus \mathbb{C} e_{-t}$
where:

$$
\begin{gathered}
h_{r_{1}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad h_{r_{2}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad e_{r_{1}}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
e_{r_{2}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad e_{s}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad e_{t}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
e_{-r_{1}}=e_{r_{1}}^{T}, \quad e_{-r_{2}}=e_{r_{2}}^{T}, \quad e_{-s}=e_{s}^{T}, \quad e_{-t}=e_{t}^{T} .
\end{gathered}
$$

We justify and complete the notation. Let $h=\left(\begin{array}{cccc}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & -a & 0 \\ 0 & 0 & 0 & -b\end{array}\right)$.
With respect to the above ordered basis:

$$
\begin{gathered}
(\operatorname{ad} h)_{\left\langle e_{r_{1}}, e_{r_{2}}, e_{s}, e_{t}\right\rangle}=\left(\begin{array}{cccc}
a-b & 0 & 0 & 0 \\
0 & 2 b & 0 & 0 \\
0 & 0 & a+b & 0 \\
0 & 0 & 0 & 2 a
\end{array}\right) \\
\Longrightarrow\left\{\begin{array} { l }
{ r _ { 1 } (h) = a - b } \\
{ r _ { 2 } (h) = 2 b } \\
{ s (h) = a + b } \\
{ t (h) = 2 a }
\end{array} \quad \text { giving } \left\{\begin{array}{l}
s=r_{1}+r_{2} \\
t=2 r_{1}+r_{2}
\end{array}\right.\right.
\end{gathered}
$$

Since

$$
-a+b=\operatorname{tr}\left(\operatorname{ad}\left(\begin{array}{cccc}
-1 / 12 & 0 & 0 & 0 \\
0 & 1 / 12 & 0 & 0 \\
0 & 0 & 1 / 12 & 0 \\
0 & 0 & 0 & -1 / 12
\end{array}\right) \operatorname{ad} h\right)
$$

$$
2 a=\operatorname{tr}\left(\operatorname{ad}\left(\begin{array}{cccc}
1 / 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 / 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \operatorname{ad} h\right)
$$

the Killing form allows the identifications:

$$
\begin{gathered}
r_{1}=\left(\begin{array}{cccc}
-1 / 12 & 0 & 0 & 0 \\
0 & 1 / 12 & 0 & 0 \\
0 & 0 & 1 / 12 & 0 \\
0 & 0 & 0 & -1 / 12
\end{array}\right), \quad r_{2}=\left(\begin{array}{cccc}
1 / 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 / 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
\left(r_{1}, r_{1}\right)=\frac{1}{6},\left(r_{2}, r_{2}\right)=\frac{1}{3},\left(r_{1}, r_{2}\right)=-\frac{1}{6} . \text { Cartan matrix }\left(\begin{array}{cc}
2 & -2 \\
-1 & 2
\end{array}\right) .
\end{gathered}
$$

Normalized basis of $\mathcal{H}:\left\{h_{r_{1}}=\frac{2 r_{1}}{\left(r_{1}, r_{1}\right)}, h_{r_{2}}=\frac{2 r_{2}}{\left(r_{2}, r_{2}\right)}\right\}$ with $h_{r_{1}}, h_{r_{2}}$ as above.
Root system: $\Phi=\left\{r_{1}, r_{2}, r_{1}+r_{2}, 2 r_{1}+r_{2},-r_{1},-r_{2},-r_{1}-r_{2},-2 r_{1}-r_{2}\right\}$
The non-trivial products of basis elements are written below. They agree with the conditions for a Chevalley basis given at the beginning of this Section, and also with the values of $A_{r s}$ given in Example 4.6.

[]	$e_{r_{1}}$	$e_{r_{2}}$	$e_{r_{1}+r_{2}}$	$e_{2 r_{1}+r_{2}}$	$e_{-r_{1}}$	$e_{-r_{2}}$	$e_{-r_{1}-r_{2}}$	$e_{-2 r_{1}-r_{2}}$
$h_{r_{1}}$	$2 e_{r_{1}}$	$-2 e_{r_{2}}$	0	$2 e_{2 r_{1}+r_{2}}$	$-2 e_{-r_{1}}$	$2 e_{-r_{2}}$	0	$-2 e_{-2 r_{1}-r_{2}}$
$h_{r_{2}}$	$-e_{r_{1}}$	$2 e_{r_{2}}$	$e_{r_{1}+r_{2}}$	0	$e_{-r_{1}}$	$-2 e_{-r_{2}}$	$-e_{-r_{1}-r_{2}}$	0

[]	$e_{r_{1}}$	$e_{r_{2}}$	$e_{r_{1}+r_{2}}$	$e_{2 r_{1}+r_{2}}$	$e_{-r_{1}}$	$e_{-r_{2}}$	$e_{-r_{1}-r_{2}}$	$e_{-2 r_{1}-r_{2}}$
$e_{r_{1}}$	0	$e_{r_{1}+r_{2}}$	$2 e_{2 r_{1}+r_{2}}$	0	$h_{r_{1}}$	0	$-2 e_{-r_{2}}$	$-e_{-r_{1}-r_{2}}$
$e_{r_{2}}$	$-e_{r_{1}+r_{2}}$	0	0	0	0	$h_{r_{2}}$	$e_{-r_{1}}$	0
$e_{r_{1}+r_{2}}$	$-2 e_{2 r_{1}+r_{2}}$	0	0	0	$-2 e_{r_{2}}$	$e_{r_{1}}$	$h_{r_{1}+r_{2}}$	$e_{-r_{1}}$
$e_{2 r_{1}+r_{2}}$	0	0	0	0	$-e_{r_{1}+r_{2}}$	0	$e_{r_{1}}$	$h_{2 r_{1}+r_{2}}$
$e_{-r_{1}}$	$-h_{r_{1}}$	0	$2 e_{r_{2}}$	$e_{r_{1}+r_{2}}$	0	$-e_{-r_{1}-r_{2}}$	$-2 e_{-2 r_{1}-r_{2}}$	0
$e_{-r_{2}}$	0	$-h_{r_{2}}$	$-e_{r_{1}}$	0	$e_{-r_{1}-r_{2}}$	0	0	0
$e_{-r_{1}-r_{2}}$	$2 e_{-r_{2}}$	$-e_{-r_{1}}$	$-h_{r_{1}+r_{2}}$	$-e_{r_{1}}$	$2 e_{-2 r_{1}-r_{2}}$	0	0	0
$e_{-2 r_{1}-r_{2}}$	$e_{-r_{1}-r_{2}}$	0	$-e_{-r_{1}}$	$-h_{2 r_{1}+r_{2}}$	0	0	0	0

6 The action of exp ad e, with e nilpotent

Let L be a linear Lie algebra over \mathbb{C} and $e \in L$. Consider the map ad $e: L \rightarrow L$, defined as $x \mapsto[e x]$. The following identity, which can be verified by induction, holds:

$$
\begin{equation*}
\frac{(\operatorname{ad} e)^{k}}{k!}(x)=\sum_{i=0}^{k} \frac{e^{i}}{i!} x \frac{(-e)^{k-i}}{(k-i)!}, \quad \forall k \in \mathbb{N} . \tag{6.1}
\end{equation*}
$$

In particular, if e is a nilpotent matrix, then ad e is nilpotent and we may consider the linear map:

$$
\exp \operatorname{ad} e:=\sum_{k=0}^{\infty} \frac{(\operatorname{ad} e)^{k}}{k!}
$$

(6.2) Lemma Let L be a subalgebra of the general linear Lie algebra $\mathcal{G} L_{n}(\mathbb{C})$ and let $e \in L$ be a nilpotent matrix. Then, for all $x \in L$:

$$
\begin{equation*}
\exp \operatorname{ad} e(x)=(\exp e) x(\exp e)^{-1} \tag{6.3}
\end{equation*}
$$

In particular the map $\exp \operatorname{ad} e: L \rightarrow L$ is an automorphism of L.
For the proof, based on (6.1), see [5, Lemma 4.5.1, page 66]. The conclusion follows from Lemma 2.5 of this chapter.

In the next two examples we give a proof of (6.3) in the most frequent cases.
(6.4) Example Let $e^{2}=0$. Then $\exp e=I+e$. Moreover:

$$
\begin{aligned}
& \operatorname{ad} e: x \mapsto[e, x]=e x-x e \\
& (\operatorname{ad} e)^{2}: x \mapsto[e, e x-x e]=-2(e x e) \\
& (\operatorname{ad} e)^{3}: x \mapsto[e,-2 e x e]=0 .
\end{aligned}
$$

Thus $\exp \operatorname{ad} e=I+\operatorname{ad} e+\frac{1}{2}(\operatorname{ad} e)^{2}$ and:

$$
\exp \operatorname{ad} e(x)=x+(e x-x e)-e x e=(I+e) x(I-e)=(\exp e) x(\exp e)^{-1}
$$

(6.5) Example Let $e^{3}=0$. Then $\exp e=I+e+\frac{1}{2} e^{2}$. Moreover:

$$
\begin{aligned}
& \operatorname{ad} e: x \mapsto e x-x e \\
& (\operatorname{ad} e)^{2}: x \mapsto[e, e x-x e]=e^{2} x-2 e x e+x e^{2} \\
& (\operatorname{ad} e)^{3}: x \mapsto\left[e, e^{2} x-2 e x e+x e^{2}\right]=-3 e^{2} x e+3 e x e^{2} \\
& (\operatorname{ad} e)^{4}: x \mapsto\left[e,-3 e^{2} x e+3 e x e^{2}\right]=6 e^{2} x e^{2} \\
& (\operatorname{ad} e)^{5}: x \mapsto\left[e, 6 e^{2} x e^{2}\right]=0 .
\end{aligned}
$$

Thus $\exp \operatorname{ad} e=I+\operatorname{ad} e+\frac{1}{2}(\operatorname{ad} e)^{2}+\frac{1}{6}(\operatorname{ad} e)^{3}+\frac{1}{24}(\operatorname{ad} e)^{4}$ and

$$
\begin{aligned}
\exp \operatorname{ad} e(x)= & x+(e x-x e)+\left(\frac{1}{2} e^{2} x-e x e+\frac{1}{2} x e^{2}\right)-\frac{1}{2}\left(e^{2} x e-e x e^{2}\right)+\frac{1}{4} e^{2} x e^{2}= \\
& \left(I+e+\frac{1}{2} e^{2}\right) x\left(I-e+\frac{1}{2} e^{2}\right)=(\exp e) x(\exp e)^{-1}
\end{aligned}
$$

7 Groups of Lie type

Let L be a simple Lie algebra over \mathbb{C}, with Chevalley basis as in (5.1):

$$
\left\{h_{r} \mid r \in \Pi\right\} \cup\left\{e_{r} \mid r \in \Phi\right\} .
$$

For all $r \in \Phi$ and for all $t \in \mathbb{C}$, we set

$$
\begin{equation*}
x_{r}(t):=\exp (t a d) e_{r} \tag{7.1}
\end{equation*}
$$

(7.2) Definition The Lie group $L(\mathbb{C})$ is the subgroup of $\operatorname{Aut}(L)$ generated by the automorphisms (7.1), namely the group:

$$
L(\mathbb{C}):=\left\langle x_{r}(t) \mid t \in \mathbb{C}, r \in \Phi\right\rangle .
$$

Since the structure constants are integers, it is possible to define a Lie algebra $\mathbb{F} \otimes_{\mathbb{Z}} L=L_{\mathbb{F}}$ over any field \mathbb{F}. The matrix representing $x_{r}(t)$ with respect to a Chevalley basis has entries of the form $a t^{i}$ where $a \in \mathbb{Z}$ and $i \in \mathbb{N}$. Interpreting a as an element of \mathbb{F}, one can identify $x_{r}(t)$ with an element of $\operatorname{Aut}\left(L_{\mathbb{F}}\right)$ and define the group $L(\mathbb{F})$ as

$$
L(\mathbb{F}):=\left\langle x_{r}(t) \mid t \in \mathbb{F}, r \in \Phi\right\rangle \quad \text { (the group of type } L \text { over } \mathbb{F} \text {). }
$$

The identifications are as follows (see Section 3):

- $\mathbf{A}_{\ell}(\mathbb{F}) \cong \mathrm{PSL}_{\ell+1}(\mathbb{F}) ;$
- $\mathbf{B}_{\ell}(\mathbb{F}) \cong \mathrm{P} \Omega_{2 \ell+1}(\mathbb{F}, f)$ where f is the quadratic form: $x_{0}^{2}+\sum_{i=1}^{\ell} x_{i} x_{-i}$;
- $\mathrm{C}_{\ell}(\mathbb{F})(\mathbb{F}) \cong \mathrm{PSp}_{2 \ell}(\mathbb{F})$;
- $\mathbf{D}_{\ell}(\mathbb{F}) \cong \mathrm{P} \Omega_{2 \ell}(\mathbb{F}, f)$ where f is the quadratic form: $\sum_{i=1}^{\ell} x_{i} x_{-i}$.
- ${ }^{2} \mathbf{A}_{\ell}(\mathbb{F}) \cong \operatorname{PSU}_{\ell+1}(\mathbb{F}) ;$
- ${ }^{2} \mathbf{D}_{\ell}(\mathbb{F}) \cong P \Omega_{2 \ell}\left(\mathbb{F}_{0}, f\right)$ where \mathbb{F} has an automorphism σ of order 2 , with fixed field \mathbb{F}_{0}, and f is the form $\sum_{i=1}^{\ell-1} x_{i} x_{-i}+\left(x_{\ell}-\alpha x_{-\ell}\right)\left(x_{\ell}-\alpha^{\sigma} x_{-\ell}\right), \alpha \in \mathbb{F} \backslash \mathbb{F}_{0}$.

The consideration of groups of Lie type allows a unified treatment of important classes of groups, like finite simple groups. According to the Classification Theorem, every finite simple group S is isomorphic to one of the following:

- a cyclic group C_{p}, of prime order p;
- an alternating group $\operatorname{Alt}(n), n \geq 5$;
- a group of Lie type $L\left(\mathbb{F}_{q}\right)$, where L is one of the algebras in (4.1);
- a twisted group of Lie type ${ }^{i} L\left(\mathbb{F}_{q}\right)$, namely the subgroup of $L\left(\mathbb{F}_{q^{i}}\right)$ consisting of the elements fixed by an automorphism of order i of $L\left(\mathbb{F}_{q^{i}}\right)$;
- one of the 26 sporadic simple groups.

8 Uniform definition of certain subgroups

Let L be a simple Lie algebra over \mathbb{C}, with Cartan decomposition

$$
L=\mathcal{H} \oplus \bigoplus_{r \in \Phi \subseteq \mathcal{H}} \mathbb{C} e_{r}
$$

We describe some kinds of important subgroups, which may be defined in a uniform way.

8.1 Unipotent subgroups

For each $r \in \Phi$, the map

$$
\begin{equation*}
t \mapsto x_{r}(t):==\exp \left(t \operatorname{ad} e_{r}\right) \tag{8.1}
\end{equation*}
$$

is a monomorphism from the additive group $(\mathbb{F},+)$ into the multiplicative group $L(\mathbb{F})$.

(8.2) Definition

- The image of the monomorphism (8.1) is denoted by X_{r} and called the radical subgroup corresponding to the root r;
- the subgroup generated by all radical subgroups corresponding to positive roots is denoted by U^{+};
- the subgroup generated by all radical subgroups corresponding to negative roots is denoted by U^{-}.

Thus:

$$
\begin{aligned}
& X_{r}=\left\{x_{r}(t) \mid t \in \mathbb{F}\right\} \simeq(\mathbb{F},+) \\
& U^{+}=\left\langle x_{r}(t) \mid t \in \mathbb{F}, r \in \Phi^{+}\right\rangle \\
& U^{-}=\left\langle x_{r}(t) \mid t \in \mathbb{F}, r \in \Phi^{-}\right\rangle
\end{aligned}
$$

U^{+}, U^{-}(and their conjugates in $\left.L(\mathbb{F})\right)$ are called unipotent subgroups. By definition

$$
L(\mathbb{F})=\left\langle U^{+}, U^{-}\right\rangle
$$

(8.3) Example $\operatorname{In} A_{\ell}(\mathbb{F})$ identified with $\mathrm{PSL}_{\ell+1}(\mathbb{F})$:

- X_{r} is the projective image of the group $\left\{I+t e_{i, j} \mid t \in \mathbb{F}\right\}$ for some $i \neq j$,
- U^{+}is the projective image of the subgroup of upper unitriangular matrices,
- U^{-}is the projective image of the subgroup of lower unitriangular matrices.

8.2 The subgroup $\left\langle X_{r}, X_{-r}\right\rangle$

For each $r \in \Phi$, the group $\left\langle X_{r}, X_{-r}\right\rangle$ fixes every vector of the Chevalley basis (5.1) except e_{r}, h_{r}, e_{-r}. Multiplying e_{r} by an appropriate scalar, if necessary, we may assume:

- $x_{r}(t)\left(e_{r}\right)=e_{r} ;$
- $x_{r}(t)\left(h_{r}\right)=h_{r}-2 t e_{r} ;$
- $x_{r}(t)\left(e_{-r}\right)=-t^{2} e_{r}+t h_{r}+e_{-r} ;$
- $x_{-r}(t)\left(e_{r}\right)=e_{r}-t h_{r}-t^{2} e_{-r} ;$
- $x_{-r}(t)\left(h_{r}\right)=h_{r}+2 t e_{r} ;$
- $x_{-r}(t)\left(e_{-r}\right)=e_{-r}$.
(8.4) Theorem There exists an epimorphism $\varphi_{r}: \mathrm{SL}_{2}(\mathbb{F}) \rightarrow\left\langle X_{r}, X_{-r}\right\rangle$ under which:

$$
\left(\begin{array}{cc}
1 & t \tag{8.5}\\
0 & 1
\end{array}\right) \mapsto x_{r}(t), \quad\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right) \mapsto x_{-r}(t) .
$$

Proof The group $\mathrm{SL}_{2}(\mathbb{F})$ has a matrix representation of degree 3, deriving from its action on the space of homogeneous polynomials of degree 2 over \mathbb{F} in the indeterminates x, y. With respect to the basis $-x^{2}, 2 x y, y^{2}$, we have:

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) & \mapsto\left(\begin{array}{ccc}
1 & -2 t & -t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right) & \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
-t & 1 & 0 \\
-t^{2} & 2 t & 1
\end{array}\right) .
\end{aligned}
$$

These are the matrices of the action of $x_{r}(t)$ and $x_{-r}(t)$ restricted to $\left\langle e_{r}, r, e_{-r}\right\rangle$ by the formulas before the statement.

8.3 Diagonal and monomial subgroups

In $\mathrm{SL}_{2}(\mathbb{F})$, for all $\lambda \in \mathbb{F}$ we have:

$$
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\lambda^{-1}-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\lambda-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\lambda^{-1} \\
0 & 1
\end{array}\right)
$$

Hence, for all $r \in \Phi$ and all $\lambda \in \mathbb{F}$ we set:

$$
h_{r}(\lambda):=\varphi_{r}\left(\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right)\right)=x_{-r}\left(\lambda^{-1}-1\right) x_{r}(1) x_{-r}(\lambda-1) x_{r}\left(-\lambda^{-1}\right) .
$$

(8.6) Definition The diagonal subgroup H of $L(\mathbb{F})$ is defined by

$$
\begin{equation*}
H:=\left\langle h_{r}(\lambda) \mid 0 \neq \lambda \in \mathbb{F}, r \in \Phi\right\rangle . \tag{8.7}
\end{equation*}
$$

The group H normalizes both U^{+}and U^{-}.
(8.8) Definition The product $U^{+} H$ is called a Borel subgroup and is denoted by B^{+}. Similarly the product $U^{-} H$ is denoted by B^{-}.
(8.9) Example Identifying $\mathbf{A}_{\ell}(\mathbb{F})$ with the projective image of $\mathrm{SL}_{\ell+1}(\mathbb{F})$:

- B^{+}is the image of the group of upper triangular matrices of determinant 1 ,
- B^{-}is the image of the group of lower triangular matrices of determinant 1.

In $\mathrm{SL}_{2}(\mathbb{F})$ we have:

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) .
$$

Hence, for all $r \in \Phi$ we set:

$$
n_{r}=\varphi_{r}\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)=x_{-r}(-1) x_{r}(1) x_{-r}(-1) .
$$

(8.10) Definition The (standard) monomial subgroup N of $L(\mathbb{F})$ is defined by:

$$
\begin{equation*}
N:=\left\langle h_{r}(\lambda), n_{r} \mid r \in \Phi, \lambda \in \mathbb{F}\right\rangle . \tag{8.11}
\end{equation*}
$$

H is a normal subgroup of N.
(8.12) Definition The factor group $W(L):=\frac{N}{H}$ is called the Weyl group of L.

$$
\begin{aligned}
& W\left(\mathbf{A}_{\ell}\right) \simeq \operatorname{Sym}(\ell+1), \\
& W\left(\mathbf{C}_{\ell}\right) \simeq W\left(\mathbf{B}_{\ell}\right) \simeq C_{2}^{\ell} \operatorname{Sym}(\ell), \\
& W\left(\mathbf{D}_{\ell}\right) \simeq C_{2}^{\ell-1} \operatorname{Sym}(\ell) .
\end{aligned}
$$

(8.13) Example In the orthogonal algebra B_{1} over \mathbb{C}, with $\Phi=\{r,-r\}$ and basis

$$
h_{r}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad e_{r}=\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
0 & 0 & 0 \\
-\sqrt{2} & 0 & 0
\end{array}\right), \quad e_{-r}=\left(\begin{array}{ccc}
0 & 0 & -\sqrt{2} \\
\sqrt{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

we have:

$$
\left.\begin{array}{c}
x_{r}(t)=I+t e_{r}+\frac{t^{2}}{2} e_{r}^{2}=\left(\begin{array}{ccc}
1 & \sqrt{2} t & 0 \\
0 & 1 & 0 \\
-\sqrt{2} t & -t^{2} & 1
\end{array}\right) ; \quad x_{-r}(t)=x_{r}(t)^{T} ; \\
h_{r}(\lambda)=x_{-r}\left(\lambda^{-1}-1\right) x_{r}(1) x_{-r}(\lambda-1) x_{r}\left(-\lambda^{-1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \lambda^{-2} & 0 \\
0 & 0 & \lambda^{2}
\end{array}\right) ; \\
n_{r}=x_{r}(1) x_{-r}(-1) x_{r}(1)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) ; \\
h_{-r}(\lambda)=h_{r}(\lambda)^{-1}, \quad n_{r}=n_{r}^{-1} ;
\end{array}\right\} \begin{gathered}
H=\left\langle h_{r}(\lambda) \mid r \in \Phi, \lambda \in \mathbb{C}^{*}\right\rangle=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \mu^{-1}
\end{array}\right) \right\rvert\, \mu \in \mathbb{C}^{*}\right\} ; \\
\left.\left.N=\left\langle h_{r}(\lambda), n_{r} \mid r \in \Phi \lambda \in \mathbb{C}^{*}\right\rangle=\left\{\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \mu^{-1} \\
0 & \mu & 0
\end{array}\right) \right\rvert\, \mu \in \mathbb{C}^{*}\right\} ; \\
W=\frac{N}{H} \cong\left\langle\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\right\rangle \cong \operatorname{Sym}(2) .
\end{gathered}
$$

(8.14) Example Identifying $\mathbf{A}_{\ell}(\mathbb{F})$ with the projective image of $\mathrm{SL}_{\ell+1}(\mathbb{F})$:

- H is the image of the subgroup of diagonal matrices of determinant 1;
- N is the image of the subgroup of monomial matrices of determinant 1 ;
- the factor group $\frac{N}{H}$ is isomorphic to the symmetric group $\operatorname{Sym}(\ell+1)$.

9 Exercises

(9.1) Exercise Let $\varphi: L \rightarrow L^{\prime}$ be a homomorphism of Lie algebras. Show that its kernel is an ideal.
(9.2) Exercise Let L be a Lie algebra and $x \in L$. Show that the map ad x is a derivation.
(9.3) Exercise Write a basis of \mathbf{C}_{2} and a basis of \mathbf{C}_{3}.
(9.4) Exercise Show that $\mathbf{C}_{\ell}(\mathbb{F})$ is a Lie subalgebra of $\mathcal{G} \mathcal{L}_{2 \ell}(\mathbb{F})$.
(9.5) Exercise Write a basis of \mathbf{B}_{1} and a basis of \mathbf{B}_{2}.
(9.6) Exercise Write a basis of \mathbf{D}_{2}.
(9.7) Exercise Verify formula (6.3) assuming $e^{4}=0$.

