where $\mu, \mu_{c} \neq 1, \mu_{c} \neq(1-\mu) / \gamma$.
Hence, $w_{l v}>1$ when:

$$
\mu_{c}>\frac{1-\mu}{2(1-\mu)-\gamma}=\mu_{c}^{*}
$$

where $\gamma \neq 2(1-\mu)$. Wages cannot be lower than 1 because in this case the traditional good would be produced in region v and not in region r.

On the contrary, when $0<\mu_{c}<\mu_{c}^{*}$, the wages of unskilled workers in the core v must be equal to 1 if the traditional good is produced in the periphery r.

Therefore we may have the two following cases.
When $0<\mu_{c}<\mu_{c}^{*}$, agglomeration of manufacturing firms in region v is an equilibrium if the ratio $Q_{m i r} / Q_{\text {mir }}^{*}$ from (41) is smaller than 1:

$$
\begin{equation*}
\frac{Q_{\operatorname{mir}}}{Q_{\text {mir }}^{*}}=\left(\frac{a_{v}}{a_{r}}\right)^{1-\sigma} \tau^{1-\sigma\left(1+\mu+\gamma \mu_{c}\right)}\left(\frac{\left(\tau^{2(\sigma-1)}-1\right)\left(1-\mu_{c} \gamma-\mu\right)}{2}+1\right)<1 \tag{51}
\end{equation*}
$$

Otherwise, when $1>\mu_{c}>\mu_{c}^{*}$, agglomeration of the manufacturing sector in region v is an equilibrium when:

$$
\begin{equation*}
\frac{Q_{\operatorname{mir}}}{Q_{\operatorname{mir}}^{*}}=\left(\frac{a_{v}}{a_{r}}\right)^{1-\sigma} \tau^{1-\sigma\left(1+\mu+\gamma \mu_{c}\right)}\left(\frac{(1-\mu)\left(1-\mu_{c}\right)}{(1-\mu-\gamma) \mu_{c}}\right)^{-\sigma(1-\gamma-\mu)}\left[\left(\tau^{2(\sigma-1)}-1\right)(1-\mu)\left(1-\mu_{c}\right)+1\right]<1 \tag{52}
\end{equation*}
$$

Appendix B.

To prove that profits in a neighborhood of a long run equilibrium can be written as a function of the number of firms n

$$
\begin{equation*}
\pi_{i}=u(n) \tag{53}
\end{equation*}
$$

it is necessary to determine the short run equilibrium, which is defined as a set of solutions to equations (54)-(58) below, once n_{n} and n_{s} are given. We express them in matrix form. To this end, variables without suffix r define vectors, variables with superscript ${ }^{\sim}$ are 2 x 2 diagonal matrix with
the i-th element of the corresponding vector in position (i,i) and zeros off the diagonal. Matrix T is: $T=\left[\begin{array}{cc}1 & \tau^{1-\sigma} \\ \tau^{1-\sigma} & 1\end{array}\right]$.

Substituting manufacturing prices p_{r} from (13), expenditures on the manufacturing good $E_{m r}$ from (4), (5) and (10), manufacturing quantities $Q_{\text {mir }}$ from (15), and production cost $T C_{m i r}$ from (9), into (12), (3), (20), (18), (19) and (21), for $r=n, s$, and given the normalizations of α and β, we obtain a system of 10 equations. The solutions of the system (54)-(58) is given by the set of the 10 "fast" variables $\left(\pi_{i n}, \pi_{i s}, p_{m n}, p_{m s}, w_{h n}, w_{h s}, w_{l s}, w_{\ln }, H_{n}, H_{s}\right)$ for given values of the slow variables n_{n} and n_{s}.

In matrix form, the equilibrium is obtained by solving the following system:

- two manufacturing good market short run equilibrium conditions:

$$
\begin{array}{r}
a+\sigma \tilde{a} \tilde{p}_{m}^{-\mu} \tilde{w}_{l}^{-1+\mu+\gamma} \tilde{w}_{h}^{-\gamma} \pi_{i}= \tag{54}\\
=\mu_{c} \tilde{a}^{\sigma} \tilde{p}_{m}^{-\sigma \mu} \tilde{w}_{l}^{-\sigma(1-\mu-\gamma)} \tilde{w}_{h}^{-\sigma \gamma} T \tilde{p}_{m}^{\sigma-1}\left(\tilde{L} w_{l}+\tilde{H} w_{h}+\tilde{n} \pi_{i}\right)+ \\
+\mu \tilde{a}^{\sigma} \tilde{p}_{m}^{-\sigma \mu} \tilde{w}_{l}^{-\sigma(1-\mu-\gamma)} \tilde{w}_{h}^{-\sigma \gamma} T \tilde{p}_{m}^{\sigma-1} \tilde{n}\left[(\sigma-1) \pi_{i}+\tilde{w}_{l}^{(1-\mu-\gamma)} \tilde{p}_{m}^{\mu} w_{h}^{\gamma}\right]
\end{array}
$$

- two composite good price indices:

$$
\begin{equation*}
0=p_{m}^{1-\sigma}-T \tilde{a}^{(-1+\sigma)} \tilde{p}_{m}^{\mu(1-\sigma)} \tilde{w}_{h}^{\gamma(1-\sigma)} \tilde{w}_{l}^{(1-\gamma-\mu)(1-\sigma)} n \tag{55}
\end{equation*}
$$

- two functions that express total wages of skilled workers in the two regions:

$$
\begin{equation*}
0=\tilde{w}_{h} H-\gamma \tilde{n}\left[(\sigma-1) \pi_{i}+\tilde{p}_{m}^{\mu} \tilde{w}_{l}^{1-\gamma-\mu} w_{h}^{\gamma}\right] \tag{56}
\end{equation*}
$$

- skilled labor market equilibrium condition together with the condition of equal real wages for the two regions:

$$
\left[\begin{array}{c}
\frac{w_{h n}}{p_{m n}^{h_{c}}} \tag{57}\\
H_{n}+H_{s}
\end{array}\right]=\left[\begin{array}{c}
\frac{w_{h s}}{p_{m s}^{h_{c}}} \\
\bar{H}
\end{array}\right]
$$

- two unskilled labor market conditions:

$$
\begin{gathered}
\qquad \begin{array}{c}
\tilde{w}_{l} \bar{L}= \\
+(1-\gamma-\mu) \tilde{n}\left[(\sigma-1) \pi_{i}+\tilde{p}_{m}^{\mu} \tilde{w}_{h}^{\gamma} w_{l}^{1-\gamma-\mu}\right]+ \\
+\left(1-\mu_{c}\right) \Lambda\left(\tilde{w}_{h} H+\tilde{w}_{l} \bar{L}+\tilde{n} \pi_{i}\right)
\end{array} \\
\text { where } \Lambda=\left[\begin{array}{cc}
\lambda_{r} & 1-\lambda_{v} \\
1-\lambda_{r} & \lambda_{v}
\end{array}\right]
\end{gathered}
$$

Let:

1. $x=\left(p_{m n}, p_{m s}, w_{h n}, w_{h s}, w_{l s}, w_{\mathrm{ln}}, H_{n}, H_{s}\right)^{\prime}$, a column vector of eight fast variables;
2. $y=\left(\pi_{i}^{\prime}, x^{\prime}\right)^{\prime}$ the column vector of the ten fast variables;
3. G_{k} be a function from R^{12} to R with continuous derivative in the neighborhood of a long run equilibrium (LRE), such that $G_{k}(y, n)=0$, with $k=1,2, \ldots 10$ are the ten equations (54)-(58);
4. $G(y, n) \equiv\left(G_{k}(y, n)\right)$.

If the det $=\left[\frac{\partial G_{k}}{\partial y_{\iota}}\right]_{*} \neq 0$, where y_{ι} is a generic element of y and $*$ means that the derivatives are evaluated at a LRE, equation $G(y, n)=0$ allows us to define in a neighborhood of such LRE function u from R^{2} to R^{2} with continuous derivative such that

$$
\pi_{i}=u(n)
$$

The Jacobian matrix of u in a LRE is denoted by $\frac{\partial u}{\partial n}\left(n^{*}\right)$.
Finally, it should be noted that at the long run equilibrium values, that is, at long run equilibrium values of all fast and slow (n_{n} and n_{s}) variables, profits should be equal to zero $\left(\pi_{i n}=\pi_{i s}=0\right)$.

Appendix C.

In this appendix we show how we compute the Jacobian matrix evaluated at the long run equilibrium

$$
J_{1}^{*}=\frac{\partial z}{\partial n}\left(n^{*}\right)=\delta M
$$

where $M=\frac{\partial u}{\partial n}\left(n^{*}\right)$.
Define:

- the column vector $x=\left(p_{m n}, p_{m s}, w_{h n}, w_{h s}, w_{l s}, w_{\ln }, H_{n}, H_{s}\right)^{\prime}$;
- and the two functions f and g, where:
f is defined from R^{12} to R^{2} and is derived from the two equations (54) in appendix B , and is such that

$$
f\left(\pi_{i}, n, x\right)=0
$$

g is defined from R^{12} to R^{8} and is derived from the eight equations (55)-(58), and is such that

$$
g\left(\pi_{i}, n, x\right)=0
$$

Total differentials of f and g are respectively given by (59) and (60):

$$
\begin{align*}
& A d \pi_{i}+B d n+C d x=0 \tag{59}\\
& D d \pi_{i}+E d n+F d x=0 \tag{60}
\end{align*}
$$

where matrices A, B, C, D, E and F are evaluated at symmetric equilibrium values, that can be computed from the system of equation (54)-(58) and are given below.

Computing $d x$ from (60),

$$
d x=-F^{-1}\left(D d \pi_{i}+E d n\right)
$$

and substituting it into (59), yields:

$$
M=\frac{\partial \pi_{i}}{\partial n}=-\left(-C F^{-1} D+A\right)^{-1}\left(-C F^{-1} E+B\right)
$$

Long run symmetric equilibrium values, which can be obtained only if technological development levels are equal in the two regions, $a_{n}=a_{s}=1$, are:

$$
\begin{aligned}
& w_{l r}=1 ; \quad \pi_{i r}=0 ; \quad H_{r}=\frac{\bar{H}}{2} ; \quad w_{h r}=\frac{2 \gamma \mu_{c} \bar{L}}{H\left(1-\mu-\gamma \mu_{c} ;\right.} ; \\
& n_{r}=\left(1+\tau^{1-\sigma}\right)^{-\frac{\mu}{1-\sigma+\mu \sigma}}\left(\frac{\mu_{c} \bar{L}}{1-\mu_{c} \gamma-\mu}\right)^{\frac{(1-\sigma)(1-\mu-\gamma)}{1-\sigma+\mu \sigma}}\left(\frac{2 \gamma}{H}\right)^{\frac{\gamma(\sigma-1)}{1-\sigma+\mu \sigma}} ; \\
& p_{m r}=\left(1+\tau^{1-\sigma}\right)^{\frac{1}{1-\sigma+\mu \sigma}}\left(\frac{\mu_{c} \bar{L}}{1-\mu_{c} \gamma-\mu}\right)^{\frac{1-\gamma \sigma}{1-\sigma+\mu \sigma}}\left(\frac{2 \gamma}{H}\right)^{-\frac{\gamma \sigma}{1-\sigma+\mu \sigma}}
\end{aligned}
$$

where $r=n, s$.
Solutions are positive for $\mu_{c}<\frac{1-\mu}{\gamma}$.

