
2 The model

Let us consider two regions, or two countries, north, n, and south, s. Both regions are inhabited by

L unskilled workers. Moreover, H skilled workers are interregionally mobile. Following Baldwin

et al. [1], we adopt the following normalizations for the number of workers: H = 1 and L =

(1−µ)/(2µ). As usual, µ represents expenditure share on manufacturing or industrial goods, with

0 < µ < 1. We notice that every time we use suffix r, r = n, s, and that if both r and v are used

in the same expression, r, v = n, s and r 6= v.

Each worker j, skilled or unskilled, consumes a traditional (or agricultural) homogenous good,

and many varieties of a modern (or manufactured, industrial) good, which are partly locally

produced and partly imported. Preferences, identical for all workers, are described by the following

utility function

U(Qmjr, Qajr) = Qµ
mjrQajr

1−µ (1)

where Qajr is the traditional good consumption by individual j in r, and Qmjr is the modern

composite good consumption, which includes all locally produced and imported varieties. The

composite manufacturing good, Qm, is obtained by the aggregation of all industrial varieties i

produced by nr firms in region r, and nv firms in region v, with

Qm =

nr+nvZ
i=1
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σ > 1 is the elasticity of substitution between any pair of industrial varieties. Moreover, we remind

that ρ = σ−1
σ represents an inverse measure of preference intensity for variety in the consumption

of manufactured goods. Each worker in region r maximizes (1) given the budget constraint:

pmrQmjr + parQajr = yjr (3)

where pmr and par are, respectively, the price of the composite industrial good and of the agri-

cultural good in region r, while yjr is jth worker’s income in r. As usual, all firms in a particular

region are symmetric. With iceberg costs for the industrial goods, τ have to be shipped in order
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to sell one unit of them in the other region. Therefore, the industrial price index in region r is

pmr =
¡
nrp

1−σ
r + nvτ

1−σp1−σv

¢ 1
1−σ (4)

From now on, following Baldwin et al. [1], we define φ = τ1−σ, with φ ∈ [0, 1]. φ is a measure of

the “freeness” of trade, with φ equal to zero when trade costs are infinite, to one when they are

null, and with φ that increases when trade costs decrease.

As usual, utility optimization yields demand for variety i produced in region r

Qmir = p−σr

µ
1

p1−σmr

Emr +
1

p1−σmv

φEmv

¶
(5)

where Emr and Emv are, respectively, expenditures on industrials goods in region r and in region

v. Let us define wh as skilled workers’ wage, wl as unskilled workers’ wage and πi as profits of firm

i. Then, solving the utility maximization problem for each worker and aggregating expenditure

on industrial goods in region r, we obtain regional expenditure on manufacturing goods

Emr = µ (whrHr + wlrL+ nrπir) (6)

Expenditure levels in the agricultural good in region r and v, Ear and Eav, are derived in a similar

way

Ear = (1− µ) (whrHr + wlrL+ nrπir) (7)

Skilled workers are interregionally mobile and employed in the production of industrial varieties.

Unskilled workers are not mobile and they are employed in the production of the agricultural good.

To produce one unit of the traditional good, one unit of unskilled worker is employed. Therefore,

with perfect competition, each region r produces Qar = L units of the traditional good. This

good is homogeneous and it is exchanged without trade costs. Therefore, its price must be equal

in the two regions, and, given that it is chosen as the numéraire, we have that

wlr = wlv = par = pav = 1 (8)

Each industrial variety is obtained with increasing returns to scale, which are internal to firms and

derive from a fixed cost of production. Specifically, to produce Qmir units of the ith variety, firms
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have to employ β/ar units of skilled workers for each unit produced, and α units of skilled workers

independent of the production level. The variable cost may differ between the two regions, given

that ar may be different from av. Parameter ar may be used as a measure of skilled workers

productivity in a particular region. Obviously, if region r is more productive than v, then ar > av.

Hence, the Hmir workers required by the ith firm to produce Qmir units of the industrial goods

are

Hmir = α+
β

ar
Qmir (9)

The cost function for each firm i in region r is

TCmir = whr(α+
β

ar
Qmir) (10)

Notice that the average production cost is decreasing in regional productivity level ar. Moreover,

for α and β we adopt the following normalizations: α = 1/σ and β = (σ − 1)/σ.4 Each firm

maximizes its profits by taking the price indices pm as given, and sets the mill price pr with a

mark up over the marginal production cost

pr =
σβ

(σ − 1) arwhr =
whr

ar
(11)

with the price paid by consumers located in region v equal to

pv = τpr

Profits realized by each firm i in region r are

πir =
whr

σ

µ
Qmir

ar
− 1
¶

(12)

From the previous expression we know that each firm i in region r produces

Qmir =
σarπir
whr

+ ar (13)

4 We follow Puga [12].
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The industrial good market is imperfectly competitive, and it is characterized by a free entry and

exit assumption for firms. Therefore, profits must be null in equilibrium, and the equilibrium

production level for each firm in r is

Q∗mir = ar (14)

The equilibrium production level is higher, the higher the regional skilled workers’ productivity

level is. Increases in workers’ productivity levels are translated not only in increases of produced

quantities, but also in regional production competitiveness levels, given that for a given wage

rate, manufactured goods’ prices decrease. Finally, we notice that if region r has a higher skilled

workers’ productivity level, with ar > av, then it has a comparative advantage in the production

of the manufacturing sector.

Equating (13) and (5), and substituting manufacturing expenditure values in both regions

when profits are null from (6) and (7), we obtain the following equilibrium condition for each

industrial variety

ar = p−σr µ

·
1

p1−σmr

(whrHr + L) +
1

p1−σmv

φ (whvHv + L)

¸
(15)

Since skilled workers are interregionally mobile and never unemployed, it must be verified that

Hr +Hv = H = 1 (16)

Skilled workers’ real wages in r, 'r, are

'r =
whr

pµmr
(17)

Finally, we observe that total incomes produced in both regions r and v are, respectively,

Yr = Hrwhr +
(1− µ)

2µ
and Yv = (1−Hr)whv +

(1− µ)

2µ
(18)

As we can observe, the model so far described is the one proposed by Krugman [6], which has been

modified in order to take into account potential interregional technological differences in skilled

workers productivity levels when ar 6= av.
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The model is completed by the description of how regional productivity levels are determined.

Equations that describe the values of ar and av need to be continuous and differentiable around the

symmetric equilibrium. Moreover, in the symmetric equilibrium both regions must be perfectly

identical, because they are described by the same parameter values, and they have the same

endogenous variable values. Particularly, in the symmetric equilibrium mobile workers and firms

are uniformly distributed between the two regions, with Hr = Hv = 1/2, and regional productivity

levels are equal, with ar = av = a.

Following Krugman [8] we assume that labour productivity levels depend on the number of

workers employed in a particular region. Particularly, we assume that regional productivity level,

ar, is a function of skilled worker density, Hr, with

ar = f(Hr) (19)

If skilled workers are uniformly distributed between the two regions, the productivity levels are

equal with ar = av = a = 1.5

Let us start from the symmetric equilibrium where ar = av = f(1/2) = 1. Equation (19)

tells us that if a certain number of skilled workers moves from the north to the south, the south-

ern productivity level increases and, on the contrary, the northern productivity level decreases.

Moreover, around the symmetric equilibrium it must be the case that for each region r

∂ar
∂Hr

¯̄̄
Hr=Hv=

1
2
= κ (20)

Geographically localized externalities may have different sources. They may have positive

nature, with κ > 0, if they derive from knowledge spillovers processes or learning by interacting

processes that foster higher productivity levels where workers density is higher. Vice versa, they

may also have a negative nature, with κ < 0, if they derive from phenomena of congestions or of

5 Note that we normalize to 1 regional productivity levels when skilled workers are uniformly distributed.
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coordination problems. However, these interactions may be more complex with decreasing returns

of regional productivity levels that may appear when workers density is sufficiently high, as shown,

for instance, in figure 1, where we represent productivity levels, ar and av, as a function of regional

skilled workers density, Hr.6

Insert figure 1 about here

3 Centripetal and centrifugal forces in the core-periphery
equilibrium

In this section we evaluate the sustainability of full agglomeration equilibria of the modern sector

in one region and we discuss how different parameters concur in the determination of the intensities

of centripetal and centrifugal forces at work.

As usual, the agglomeration of all firms in region v is a sustainable equilibrium only if the

ratio between the sales that a firm could realize by relocating its production in region r, Qmir,

and those required to break even, Q∗mir, is smaller than 1, that is if:

Qmir

Q∗mir

=

µ
av
ar

¶1−σ
φ1+

σµ
σ−1

·
1 +

µ
1

φ2
− 1
¶
(1− µ)

2

¸
< 1 (21)

Expression (21) is derived considering the case in which real wages of skilled mobile workers are

equal in the two regions in order to give them the incentive to work in both regions. It is well

known that an expression similar to (21) can be derived if we assume that firms produce quantities

that correspond to null profits, that is long run equilibrium quantities, and we examine if skilled

workers have any incentive to move from the core v to the periphery r. Particularly, skilled workers

do not move towards the periphery r when their real wage in the periphery r is smaller than in

the core v. Therefore, the core periphery outcome with agglomeration in v is sustainable when

'σ
hr = aσµv

µ
av
ar

¶1−σ
φ1+

σµ
σ−1

·
1 +

µ
1

φ2
− 1
¶
(1− µ)

2

¸
< aσµv = 'σ

hv (22)

6 The function for ar is ar = 1 + 0.2Hr(1 −Hr)(Hr − 1/2), and for av is av = 1 + 0.2Hv(1−Hv)(Hv − 1/2)
with Hv = 1−Hr.
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