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Abstract 

 

 In Vibrio harveyi, a bacterium living in sym-

biosis with marine organisms, bioluminescence and 

the expression of several virulence factors are regu-

lated by quorum sensing (QS), the communication 

circuit that many bacteria use to sense population 

density and regulate a diverse array of physiological 

activities. In this study, the evidence of magnetic 

crystals in V. harveyi-related strain PS1 led us to in-

vestigate the behaviour of this bacterium under expo-

sure to magnetic field (MF). We found that MF 

stimulated bioluminescence and the physiological 

significance of the observed magnetic responses of 

Vibrio sp. PS1 has been discussed with reference to 

its symbiotic life.  

 

 

INTRODUCTION 

 

The magnetic-field sensory perception called 

magnetoreception is one of the most intriguing phe-

nomena in Nature. It influences the activities of many 

living organisms, including the migratory behavior of 

birds [1], homing orientation of pigeons [2], naviga-

tion of sharks, rays and sea turtles [3, 4], quick direc-

tionalization to the nearest shore by salamanders, 

frogs and sea turtles when they sense danger [3-6], 

comb building and homing orientation by honeybees 

[7-9]. Magnetoreception has been also reported in 

plants [10] and protists [11], and magnetite biominer-

alization has been demonstrated in human brain [12]. 

Magnetic responses are fairly common among marine 

bacteria. The best-known examples are the magneto-

tactic bacteria that use highly ordered and chemically 

pure crystals of magnetite (Fe3O4) and greigite 

(Fe3SO4), arranged in one or more chains, to form 

magnetosomes. These magnetic organelles, which are 

surrounded by an electron dense lipid layer, act like a 

compass needle to orient magnetotactic bacteria in 

Earth's magnetic field, thereby simplifying their 

search for their preferred microaerophilic environ-

ments [13-16]. 

In this study, the discovery of magnetic crystals in the 

cytoplasm of V. harveyi, a common inhabitant of 

tropical and temperate marine environments, either in 

a free-living state or in symbiosis with marine life [17

-21] led us to investigate the behaviour of this lumi-

nescent microorganism under exposure to static MF. 

We found that bioluminescence is sensitive to MF. 

When exposed to a static MF an enhancement of the 

luminous intensity emitted by the cultures growing on 

solid medium was observed as a function of dose. 

 

 

RESULTS 

 

Vibrio sp. PS1 contains unusual magnetic crystals 

PS1 is a luminescent bacterium, taxonomically 

related to the species V. harveyi, which was recently 

isolated from a marine hydrozoon [21]). In the course 

of a study dealing with the ultra-structure of this bac-

terial isolate, transmission electron microscopy 

(TEM) images showed intracellular electron dense 

inclusions about 10–50 nm in size (Fig.1A-D). These 

inclusions exhibited a polyhedral shape and were 

typically located in the nucleoid area. They did not 

appear to be surrounded by membrane or membrane-

like structure and were never arranged in a chain. The 

crystals (or some of them) were magnetic as they 

could be purified by magnetic separation and ob-

served by TEM and scanning electron microscopy 

(SEM) (Fig. 2A-B). 
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Bioluminescence is affected by static MF exposure 

 

The presence of magnetic crystals in the cytoplasm of 

Vibrio sp. PS1 led us to investigate the behaviour of 

this microorganism under exposure to MF. The pres-

ence of magnetic crystals in the cytoplasm of Vibrio 

sp. 

PS1 led us to investigate the behaviour of this micro-

organism  under exposure to MF. We started analys-

ing possible magnetotactic responses without success.  

Then  we  explored  the  effect  of   the  exposure to 

static MF on bioluminescence. When spotted onto 

agar plates, Vibrio sp. PS1 exhibited an intense lumi-

nescence showing a peak at 470 nm and a shoulder 

near 500 nm (Fig. 3).  

Bacteria were exposed or sham-exposed to a static 

MF of 20, 200 and 2000 Gauss during their growth in 

a climate chamber under nearly constant temperature 

and humidity conditions, in the dark. Luminescence 

was monitored over a period of 350 h by using the 

apparatus showed in Fig. 4. When compared to sham-

exposed bacteria, the light emission of MF-exposed 

bacteria growing on solid medium was not affected at 

20 Gauss, but it enhanced progressively at 200 and 

2000 Gauss, protracting much longer during the sta-

tionary phase when an enhancement of light emis-

sion, barely detectable in sham-exposed bacteria and 

in bacteria exposed to 20 and 200 Gauss, was ob-
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Fig. 1. Transmission electron microscopy (TEM) analy-

sis of Vibrio sp. PS1. Note the presence, in the nucleoid 

area, of the electron dense inclusions about 10–50 nm in 

size exhibiting a polyhedral shape (arrows). Panels B 

and D are enlargement of regions of panels A and C, 

respectively. Bars represent 1 mm in A, 0.5 mm in C and 

0.2 mm in B and D. 

Fig. 2. Images of purified magnetic particles. (A) Puri-

fied magnetic particles were analysed by scanning elec-

tron microscopy (SEM). (B) Purified magnetic particles 

were analysed by transmission electron microscopy 

(TEM). Note the tendency of the particles to stick to-

gether confirming their magnetic nature. Bars represent 

0.1 mm in A and B. 

Fig. 3. Emission spectra of Vibrio sp. PS1after 8 

(triangles), 16 (squares) and 24 (diamonds) h of growth 

on nutrient brtoth containing 3% NaCl at 20°C. 

Fig. 4. Light emission monitoring during growth of Vi-

brio sp. PS1. Light emission of MF-exposed (20, 200 or 

2000 Gauss) or sham-exposed Vibrio sp. PS1 was moni-

tored during growth on nutrient agar 1.5% containing 
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This phenomenon was not due to an effect of MF on 

bacterial growth or viability. In fact, viability assess-

ment by using either the CFU method (data not 

shown) or a dead/live staining (Fig. 6 and data not 

shown) demonstrated the absence of any significant 

differences between MF-exposed (20, 200 or 2000 

Gauss) and sham-exposed bacteria.  

The enhancement was not even due to a direct effect 

of MF on the photochemical reaction catalyzed by the 

bacterial luciferase because the luminous intensity of 

the bacteria grown for 48 h without MF (20, 200 or 

2000 Gauss) did not change in a short time (as ex-

pected if a direct effect of MF on the photochemical 

reaction were involved) following exposure to MF 

(data not shown). We thus believed that gene regula-

tion could be involved, as demonstrated in She-

wanella oneidensis in which whole genome microar-

ray data showing that a luxR family gene was among 

the 21 genes of Shewanella oneidensis, whose ex-

pression was significantly up-regulated following 

exposure to a strong static MF [22]. 

 

DISCUSSION 

In this study, evidence is provided that Vibrio sp. 

PS1, a luminescent bacterium, taxonomically related 

to the species V. harveyi, is responsive to static MF. 

When compared to sham-exposed bacteria, the light 

emission of MF-exposed bacteria growing on solid 

medium was significantly enhanced, with a dose-

response relationship, and protracted much longer 

during the stationary phase (Fig. 5).  

The magnetic crystals observed in the cytoplasm of 

Vibrio sp. PS1 (Figg. 1,2) might also be involved in 

the mechanism of magneto-reception. At variance 

with the magnetite and greigite crystals of the magne-

Fig. 5. Light emission monitoring during growth of Vi-

brio sp. PS1. Light emission of MF-exposed (20, 200 or 

2000 Gauss) or sham-exposed Vibrio sp. PS1 was moni-

tored during growth on nutrient agar 1.5% containing 

3% NaCl. These measurements were repeated five times 

with comparable results. 

Fig. 6. Viability assessment during growth of Vibrio sp. 

PS1. Viability of MF-exposed (200 Gauss) or sham-

exposed Vibrio sp. PS1 was determined by using the 

Live/Dead BacLight method as detailed in the Materials 

and Methods section. Data are shown as mean ± stan-

dard deviation from five independent experiments.  
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tosomes occurring in magnetotactic bacteria, these 

crystals are not arranged in chains. Thus it is unlikely 

that they can act like a compass needle to orient the 

bacteria during their movement. Their size up to 50 

nm is big enough to have a magnetic field and at the 

same time small enough to remain a single magnetic 

domain [23]. However, the precise mechanism by 

which they may act as MF sensors is currently un-

known, as well as the chemical composition and bio-

genesis of these crystals. 

The most intriguing question concerns the physio-

logical significance of the presence of magnetic crys-

tals and the observed magnetic responses of Vibrio 

sp. PS1. As previously mentioned, V. harveyi is often 

found in symbiosis with marine organisms that use 

bioluminescence as a form of optical communication 

for attracting mates or prey, or for defence against 

predation in dark environments [24]. Since it seems 

unlikely that these bacteria use the magnetic crystals 

for magnetotaxis, it is possible that the observed mag-

netic responses may play a role during the host colo-

nization when bacteria form a well-structured biofilm 

and activate the QS circuit. In this regard, it is worthy 

of note the study of Simmons and colleagues [25], 

which emphasizes the need of new models to address 

the role of magnetoreception in bacteria. host coloni-

zation when bacteria form a well-structured biofilm 

and activate the QS circuit. In this regard, it is worthy 

of note the study of Simmons and colleagues [25], 

which emphasizes the need of new models to address 

the role of magnetoreception in bacteriastructured 

biofilm and activate the QS circuit. In this regard, it is 

worthy of note the study of Simmons and colleagues 

[25], which emphasizes the need of new models to 

address the role of magnetoreception in bacteria. 

 Simmons and colleagues [25], which emphasizes the 

need of new models to address the role of magnetore-

ception in bacteria. host colonization when bacteria 

form a well-structured biofilm and activate the QS 

circuit. In this regard, it is worthy of note the study of 

Simmons and colleagues [25], which emphasizes the 

need of new models to address the role of magnetore-

ception in bacteria. 

 

 

MATERIALS AND METHODS 

 

Bacterial strains and growth media 
 

Vibrio sp. PS1 was described previously (20). For 

bioluminescence monitoring Vibrio sp. PS1 was cul-

tured on nutrient broth (Difco) containing 3% NaCl at 

20°C to an optical density of 1.0 at 550 nm. Ten mi-

croliters of the suspension was spotted at the centre 

of 3% NaCl nutrient agar plates.  

 

Bioluminescence monitoring 

 

To perform measurements of bacteria luminescence 

we prepared two identical experimental set up in-

serted inside the climate chamber under nearly con-

stant temperature and humidity conditions (Fig. 4). 

Absolute dark inside was operated. Each experimen-

tal set up contained a very sensible photomultiplier 

(PMT) 1IP28 capable to record light of low intensity 

emitted by our samples. Indeed the gain factor was of 

5x106. The sensibility range of photomultiplier 

ranged form 185 to 700 nm. Its active window was 

24 mm height and 8 mm width that we utilized to 

pick up the whole light emitted from samples. The 

photomultiplier signals were leaded to a workstation 

interfaced to a personal computer utilized like stor-

age. A channel of the workstation was utilized to re-

cord the temperature. 

 

Wavelength monitoring 

 

The wavelength monitoring was performed by a 

0.300 meter focal length monochromator SP-308 in-

terfacing with a PC capable to control the wavelength 

value (Fig. 7). The grating utilised had f 1200 g/mm. 

and the whole system was sensible for the range from 

350 to 800 nm. The plates contained the nutrient agar 

were exposed to the entrance of a UV optical fiber 

which leaded the emitted light to the monochromator. 

The output of the monochromator was connected to a 

1IP28 photomultiplier The signal intensity of the 

PMT was very low and in this case a number of pho-

tons enter the photomultiplier tube and create an out-

Fig. 7. Sketch of the apparatus utilized to record the 

emission spectrum. WS2: workstation; T: thermometer. 
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put pulse train. Thee oscilloscope shows flash signals 

of different intensity and repletion rate. Therefore to 

estimate the value of the intensity we operated the 

overlapping of the output pulses till up 300 samples. 

Recording these results on wavelength the response 

was a constant value by it we determined the wave-

length spectra. 

Exposure of bacteria to static MF 

 

Exposure of bacteria to static MF was achieved by 

using magnets of circular geometry, which were ap-

plied on the back of Petri dishes as shown in Fig. 8. 

The magnetic flux density (20 Gauss [= 2 mT], 200 

Gauss [= 20 mT] and 2000 Gauss [= 200 mT]) was 

modulated by using magnets of different strength. 

Magnetotactic responses were determined micro-

scopically using the method of Blakemore and col-

legues [26]. 

 

 

Electron microscopy 

 

For transmission electron microscopy (TEM) samples 

were fixed with 2% glutaraldehyde and 1% formalde-

hyde in 0.04 M piperazine-N, N‟-bis (2-ethansulfonic 

acid) (PIPES) buffer at pH 7.0 for 2 h at room tem-

perature. The samples were rinsed in 0.08 M PIPES 

buffer and twice in 0.08 M Na-cacodylate buffer and 

post-fixed in 1% OsO4 in 0.08 M Na-cacodylate 

buffer, pH 6.7, overnight at 4°C. Following dehydra-

tion in a step gradient of ethanol with three changes 

of anhydrous ethanol and one of propylene oxide in-

cubation step at 4°C, the samples were slowly infil-

trated with Epon 912 resin at 4°C, transferred to poly-

propylene dishes and incubated at 70°C for 24 h. 

Thin sections were stained with 3% uranyl acetate in 

50% methanol for 15 min and in Reynold‟s lead cit-

rate for 10 min and then examined with a Leo 912AB 

electron microscope. 

For scanning electron microscopy (SEM) observa-

tions, samples were fixed with 1% glutaraldehyde, 

washed three times with distilled water by centrifuga-

tion, dehydrated in a graded alcohol series and criti-

cal-point dried. The sample was then mounted on 

Aluminum stubs, sputter-coated with gold and exam-

ined at an accelerating voltage of 20 kV with a Jeol 

6060LV Scanning Electron microscope. 

Separation of magnetic crystals 
 

Magnetic nanoparticles of Vibrio sp. PS1 were puri-

fied from broken cells by a magnetic separation tech-

nique. Approximately 2 x 1011 bacteria cells sus-

pended in 5 ml of buffer A (50 mM Tris-Cl pH 7.5, 

0.1 mM phenylmethylsulfonyl fluoride) were dis-

rupted by two passes through a French pressure cell 

at 750 p.s.i. (1 p.s.i. = 6.89 kPa). Unbroken cells and 

cell debris were removed from samples by centrifu-

gation at 10.000 g for 15 min. The cell extract (1 ml) 

was poured into a 1 cm spectrophotometric cuvette 

and covered on top. Two magnets generating a mag-

netic field gradient were applied on opposte sides of 

the cuvette. Control cuvettes without magnets were 

used. After 12 h incubation a blackish magnetic frac-

tion accumulated at the sides of the cuvette nearest 

the magnets. The nonmagnetic fluid fraction was re-

moved by aspiration, and the magnetic phase was 

suspended in 500 l of buffer A and again subjected 

to magnetic separation. This procedure was repeated 

at least three times. Finally, the magnetic particles 

were fixed for TEM or SEM analysis as described 

above. 
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