
Chapter 6

Euler buckling for compressible
cylinders

One of the first, and most important, problems to be tackled by the theory
of linear elasticity is that of the buckling of a column under an axial load. Using
Bernoulli’s beam equations, Euler found the critical load of compression Ncr leading
to the buckling of a slender cylindrical column of radius B and length L. As
recalled by Timoshenko and Gere [124], Euler looked at the case of an ideal column
with (built in)-(free) end conditions. What is now called “Euler buckling”, or the
“fundamental case of buckling of a prismatic bar” [124] corresponds to the case of
a bar with hinged-hinged end conditions. The corresponding critical load is given
by
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, (6.1)

where E is the Young modulus. The extension of this formula to the case of
a thick column is a non-trivial, even sophisticated, problem of non-linear three-
dimensional elasticity. In general, progress can be only made by using reductive
(rod, shells, etc.) theories. However, there is another choice of boundary condi-
tions for which the criterion (6.1) is valid: namely, the case where both ends are
“guided” or ”sliding” (the difference between the two cases lies in the shape of the
deflected bar, which is according to the half-period of a sine in one case and of a
cosine in the other case). In exact non-linear elasticity, there exists a remarkable
three-dimensional analytical solution to this problem (due to Wilkes [129]) which
describes a small-amplitude (incremental) deflection superimposed upon the large
homogeneous deformation of a cylinder compressed between two lubricated platens.
In this case, the Euler formula can be extended to the case of a column with finite
dimensions, for arbitrary constitutive law.

The exact incremental solution allows for an explicit derivation of Euler’s for-
mula at the onset of non-linearity, which combines third-order elastic constants
with a term in (B/L)4. Goriely et al. [47], showed that for an incompressible
cylinder,
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where A is Landau’s third-order elasticity constant. This formula clearly shows
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that geometrical non-linearities (term in (B/L)4) are intrinsically coupled to phys-
ical non-linearities (term in A) for this problem. (For the connection between
Euler’s theory of buckling and incremental incompressible nonlinear elasticity, see
the early works of Wilkes [129], Biot [13], Fosdick and Shield [41], and the references
collected in [47].)

Now, in third-order incompressible elasticity, there are two elastic constants:
the shear modulus µ (= E/3) and A (see (2.45)). In third-order compressible elas-
ticity, there are five elastic constants: λ and µ, the (second-order) Lamé constants
(or equivalently, E and ν, Young’s modulus and Poisson’s ratio), and A, B, and C,
the (third-order) Landau constants (see (2.43)). Euler’s formula at order (B/L)2,
equation (6.1), involves only one elastic constant, E. It is thus natural to ask
whether Poisson’s ratio, ν, plays a role in the non-linear correction to Euler for-
mula of (B/L)4, the next-order term. The final answer is found in our recent work
[26] as formula (6.32) below, which shows that the non-linear correction involves
all five elastic constants.

6.1 Finite compression and buckling

In this section, we recall the equations governing the homogeneous compression
of a cylinder in the theory of exact (finite) elasticity and we also use the form of
some incremental solutions that is, of some small-amplitude static deformations
which may be superimposed upon the large compression and which indicate the
onset of instability for the cylinder.

The mathematical method used to determine the solutions for incremental so-
lution is another example for the semi-inverse method. In fact our ansatz for the
components of the mechanical displacement will be in looking for incremental static
solutions that are periodic along the circumferential and axial directions, and have
yet unknown radial variations (see formula (6.10)).

6.1.1 Large deformation

We take a cylinder made of a hyperelastic, compressible, isotropic solid with
strain energy function W = Ŵ (λ1, λ2, λ3) say, with radius B and length L in its
undeformed configuration. We denote by (R, Θ, Z) the coordinates of a particle in
the cylinder at rest, in a cylindrical system.

Then we consider that the cylinder is subject to the following deformation,

r = λ1R, θ = Θ, z = λ3Z, (6.3)

where (r, θ, z) are the current coordinates of the particle initially at (R, Θ, Z), λ1 is
the radial stretch ratio and λ3 is the axial stretch ratio. Explicitly, λ1 = b/B and
λ3 = l/L, where b and l are the radius and length of the deformed cylinder, respec-
tively. The physical components of F , the corresponding deformation gradient,
are:

F = Diag (λ1, λ1, λ3) , (6.4)

showing that the deformation is equi-biaxial and homogeneous (and thus, univer-
sal).
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The (constant) Cauchy stresses required to maintain the large homogeneous
compression are given by formula (1.42),

Ti = J−1λiWi, i = 1, 2, 3 (no sum), (6.5)

where Wi ≡ ∂W/∂λi. In our case, T1 = T2 because the deformation is equi-biaxial,
and T1 = T2 = 0 because the outer face of the cylinder is free of traction. Hence

T1 = T2 = λ−1
1 λ−1

3 W1 = 0, T3 = λ−2
1 W3. (6.6)

Note that we may use the first equality to express one principal stretch in terms
of the other (provided, of course, that inverses can be performed).

6.1.2 Incremental equations

Now we recall the equations governing the equilibrium of incremental solutions,
in the neighborhood of the finite compression. They read in general as (1.80)

div ΣT = 0, (6.7)

where Σ is the incremental nominal stress tensor. It is related to u, the incremental
mechanical displacement, through the incremental constitutive law (1.81), that in
component form can be written as

Σji = A0jilkuk,l, (6.8)

where the comma denotes partial differentiation with respect to the current coordi-
nates and A0 is the fourth-order tensor of incremental elastic moduli. Its non-zero
components, in a coordinate system aligned with the principal axes of strain, are
given by (1.84). Note that here, some of these components are not independent
one from another because λ1 = λ2 and T1 = T2 = 0. In particular, we find that

A01212 = A02121 = A01221, A02323 = A01313 = A01331 = A02332,

A02222 = A01111, A02233 = A01133, A03232 = A03131, (6.9)

A01122 = A01111 − 2A01212.

6.1.3 Incremental solutions

We look for incremental static solutions that are periodic along the circum-
ferential and axial directions, and have yet unknown radial variations. Thus our
ansatz for the components of the mechanical displacement is the same as Wilkes’s
[129]:

ur = Ur(r) cos nθ cos kz,

uθ = Uθ(r) sin nθ cos kz, (6.10)

uz = Uz(r) cos nθ sin kz,

where n = 0, 1, 2, . . . is the circumferential mode number ; k is the axial wavenum-
ber ; the subscripts (r, θ, z) refer to components within the cylindrical coordinates
(r, θ, z); and all upper-case functions are functions of r alone.
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Dorfmann and Haughton [31] show that the following displacements U (1), U (2),
and U (3) are solutions to the incremental equations (6.7),

U (1)(r), U (2)(r) =

[

I ′

n(qkr),− n

qkr
In(qkr),−(A01111q

2 −A03131)

q(A01313 + A01133)
In(qkr)

]T

,

(6.11)
and

U (3)(r) =

[

1

r
In(q3kr),−q3k

n
I ′

n(q3kr), 0

]T

, (6.12)

where q = q1, q2 in turn and In is the modified Bessel function of order n. Here q1,
q2, and q3 are the square roots of the roots q2

1, q2
2 of the following quadratic in q2:

A01313A01111q
4 + [(A01133 + A01313)

2 −A01313A03131

−A03333A01111]q
2 + A03333A03131 = 0, (6.13)

and of the root of the following linear equation in q2

A01212q
2 −A03131 = 0, (6.14)

respectively.
From (6.8) we find that the incremental traction on planes normal to the axial

direction has components of the same form as that of the displacements, namely

Σrr = Srr(r) cos nθ cos kz,

Σrθ = Srθ(r) sin nθ cos kz, (6.15)

Σrz = Srz(r) cos nθ sin kz,

say, where again the functions Srr, Srθ, Srz are functions of r alone. Then we find
that the traction solutions corresponding to the solutions (6.11) and (6.12) are
given by

rS(1)(r), rS(2)(r) =

[
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(6.16)

and

rS(3)(r) =

[
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. (6.17)
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The general solution to the incremental equations of equilibrium is thus of the
form

rS(r) =
[

rS(1)(r)
∣

∣

∣rS(2)(r)
∣

∣

∣rS(3)(r)
]

c, (6.18)

where S ≡ [Srr, Srθ, Srz]
T , and c is a constant three-component vector. Note that

we use the quantity rS for the traction (instead of S), because it is the Hamiltonian
conjugate to the displacement in cylindrical coordinates [117].

Now when the cylinder is compressed (by platens say), its end faces should stay
in full contact with the platens so that the first incremental boundary condition is

uz = 0, on z = 0, l, (6.19)

which leads to [31, 47]

k = mπ/l, (6.20)

for some integer m, the axial mode number. From (6.15), we now see that on the
thrust faces, we have

Σrz = 0, on z = 0, l, (6.21)

which means that the end faces of the column are in sliding contact with the
thrusting platens. In other words, in the limit of a slender column, we recover the
Euler strut with sliding-sliding, or guided-guided end conditions. In Figure 6.1,
we show the first two axi-symmetric and two asymmetric modes of incremental
buckling.

The other boundary condition is that the cylindrical face is free of incremental
traction: S(b) = 0. This gives

∆ ≡ det
[

bS(1)(b)
∣

∣

∣bS(2)(b)
∣

∣

∣bS(3)(b)
]

= 0. (6.22)

6.2 Euler buckling

6.2.1 Asymptotic expansions

We now specialize the analysis to the asymmetric buckling mode n = 1, m = 1,
corresponding to the Euler buckling with guided-guided end conditions, in the
limit where the axial compressive stretch λ3 is close to 1 (the other modes are
not reached for slender enough cylinders). To this end, we only need to consider
the third-order elasticity expansion of the strain energy density (2.43). (Note that
there are other, equivalent, expansions based on other invariants, such as the ones
proposed by Murnaghan [86], Toupin and Bernstein [125], Bland [17], or Eringen
and Suhubi [37], see Norris [91] for the connections.)

To measure how close λ3 is to 1, we introduce ǫ, a small parameter proportional
to the slenderness of the deformed cylinder,

ǫ = kb = πb/l. (6.23)
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Figure 6.1: First two axi-symmetric and two asymmetric modes of buckling for a
compressed strut with guided-guided end conditions: n is the circumferential mode
number and m the axial mode number. For slender enough cylinders, the n = 1,
m = 1 mode is the first mode of buckling.

Then we expand the radial stretch λ1 and the critical buckling stretch λ3 in terms
of ǫ up to order M ,

λ1 = λ1(ǫ) = 1 +
M

∑

p=1

αpǫ
p + O(ǫM+1), λ3 = λ3(ǫ) = 1 +

M
∑

p=1

βpǫ
p + O(ǫM+1),

(6.24)
say, where the α’s and β’s are to be determined shortly. Similarly, we expand ∆
in powers of ǫ,

∆ =

Md
∑

p=1

dpǫ
p + O(ǫMd+1),

and solve each order dp = 0 for the coefficients αp and βp, making use of the
condition T1 = 0. We find that αp and βp vanish identically for all odd values of
p, and that λ1 and λ3, up to the fourth-order in ǫ, are given by

λ1 = 1 + α2ǫ
2 + α4ǫ

4 + O(ǫ6), λ3 = 1 + β2ǫ
2 + β4ǫ

4 + O(ǫ6), (6.25)
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with α2 and α4 given by

α2 =
ν

4
, (6.26)

and

α4 = −ν(1 + ν)

32
−

(1 + ν)(1 − 2ν)

16E

[

ν2A + (1 − 2ν + 6ν2)B + (1 − 2ν)2C
]

− νβ4, (6.27)

wherein

β2 = −1

4
, (6.28)

and

β4 =
29 + 39ν + 8ν2

96(1 + ν)
+

1

16E

[

(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3C
]

.

Note that we switched from Lamé constants to Poisson’s ratio and Young’s modulus
for these expressions, using the connections (1.53).

6.2.2 Onset of nonlinear Euler buckling

The analytical results presented above are formulated in terms of the current
geometrical parameter ǫ, defined in (6.23). In order to relate these results to the
classical form of Euler buckling, we introduce the initial geometric slenderness
B/L. Recalling that ǫ = πb/l, λ3 = l/L, and b = λ1B, we find that

ǫλ3 = πλ1(B/L). (6.29)

We expand ǫ in powers of B/L, and solve (6.29) to obtain

ǫ = π(B/L) + (α2 − β2)π
3(B/L)3 + O

(

(B/L)4
)

= π(B/L) + (1 + ν)(π3/4)(B/L)3 + O
(

(B/L)4
)

. (6.30)

Second, we wish to relate the axial compression to the current axial load N .
To do so, we integrate the axial stress over the faces of the cylinder,

N = −2π

∫ b

0

rT3dr = −πb2T3 = −πλ2
1B

2T3, (6.31)

because T3 is constant, given by (6.6)2.
Finally, in order to write the nonlinear buckling formula, we expand λ1 and

λ3 in (6.31), using (6.25), and then expand ǫ in powers of the slenderness (B/L),
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using (6.30). It gives the desired expression for the first non-linear correction to
Euler formula,

Nc

π3B2
=

E

4
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− π2

96
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)4

, (6.32)

where

δ NL = 2
13 + 12ν − 2ν2

(1 + ν)
E+

12
[

(1 − 2ν3)A + 3(1 − 2ν)(1 + 2ν2)B + (1 − 2ν)3C
]

. (6.33)

We now check this equation against its incompressible counterpart (6.2). The-
oretical considerations and experimental measurements [22, 29, 94, 131], show that
in the incompressible limit, E and A remain finite,

ν → 1/2, (1 − 2ν)B → −E/3, (1 − 2ν)3C → 0. (6.34)

It is then a simple exercise to verify that (6.32) is indeed consistent with (6.2) in
those limits.

6.2.3 Examples

Table 6.1: Lamé constants and Landau third-order elastic moduli for five solids (109 N·
m−2)

material λ µ A B C
Polystyrene 1.71 0.95 −10 −8.3 −10.6
Steel Hecla 37 111 82.1 −358 −282 −177
Aluminium 2S 57 27.6 −228 −197 −102
Pyrex glass 13.5 27.5 420 −118 132
SiO2 melted 15.9 31.3 −44 93 36

To evaluate the importance of the non-linear correction, we computed the crit-
ical axial stretch ratio of column buckling for two solids. In Table 6.1, we list the
second- and third-order elastic constants of five compressible solids, as collected
by Porubov [101] (in the Table we converted the “Murnaghan constants” given by
Porubov to Landau constants A,B, C). Figure 6.2 shows the variations of λ3 with
the squared slenderness (B/L)2, for pyrex and silica (two last lines of Table 1).

Notes

The present analysis can be considered an extension of the article [47] from
incompressible solids to compressible solids. It provides an asymptotic formula
for the critical value of the load for the Euler buckling problem, with guided-
guided (sliding-sliding) end conditions. This formula was checked both in the
incompressible limit and on particular cases against the exact value of the buckling
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Figure 6.2: Comparison of the different Euler formulas obtained by expanding the
exact solution to order 2 (classical Euler buckling formula, plot labeled “Euler2”)
and to order 4 (plot labeled “Euler4”), for pyrex (a) and for silica (b).

obtained from the exact solutions. Not surprisingly it reinforces the universal and
generic nature of the Euler buckling formula, as the correction is small for most
systems even when nonlinear elastic effects and nonlinear geometric effects are
taken into account. It would be of great interest to see if these effects could be
observed experimentally.

We note that Goriely et al. [47] write the equations for the linearized problem
of instability using the Stroh formalism [122]. They adapt the work of Shuvalov
[117] on waves in anisotropic cylinders to develop a Stroh-like formulation of the
problem. From a computational perspective, the Stroh formalism is particularly
well suited and well behaved (Biryukov [14]; Fu [42]) and if numerical integration
was required it would provide an ideal representation of the governing equation.

Here we could have also presented the linearized problem of instability for the
compressible cylinder within the Stroh formalism. We have omitted this formalism
because it was not essential for our discussion.




