
Chapter 5

Secondary deformations in
nonlinear elasticity

In Section 3.2.2, we have shown that in the incompressible case, the general
antiplane shear (3.64) can not be always sustained unless the axisymetric case is
considered. This means that when the geometry of the material deformed moves
away from axial symmetry, we can describe the deformation only for special par-
ticular materials. For example, consider the case of an elastic material filling the
annular region between two coaxial cylinders, with the following boundary-value
problem: hold fixed the outer cylinder and pull the inner cylinder by applying a
tension in the axial direction. A solution to this problem, valid for every incom-
pressible isotropic elastic solid, is obtained by assuming a priori that the defor-
mation field is a pure axial shear. However if consider the corresponding problem
for non-coaxial cylinders, thereby losing the axial symmetry, then it is clear that
we cannot expect the material to deform as prescribed by a pure axial shear de-
formation. Knowles’ result [72] tells us that now the boundary-value problem can
be solved with a general anti-plane deformation (not axially symmetric) only for a
subclass of incompressible isotropic elastic materials.

Moreover, in Sections 4.1 and 4.2, we have underlined how it is not always
possible for a compressible material to sustain pure torsion and pure axial shear,
respectively, unless some particular forms of strain energy functions are considered,
because in general they might be accompanied by the radial deformation. In Sec-
tion 4.4, some explanations about the dangers in forcing the compressible material
to have some special behaviours were given.

Of course, these restrictions do not mean that, for a generic material, it is
not possible to deform the solid as prescribed by our boundary conditions, but
rather that, in general, these lead to a deformation field that is more complex for
example than a pure torsion or than an anti-plane shear. Hence, we also expect
secondary deformations: a clear difficult task to understand in solving boundary-
value problem by appealing only to a semi-inverse procedure.

The theory of non-Newtonian fluid dynamics has generated a substantial lit-
erature about secondary flows, see for example Fosdick and Serrin [40]. In 1956,
Ericksen [35] conjectured that purely rectilinear flows would be possible only in
pipes of circular cross sections or cross sections made of straight lines and circles,
secondary flows being necessarily present in pipes of arbitrary cross sections. In
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92 Chapter 5. Secondary deformations in nonlinear elasticity

1973, Fosdick and Serrin [40] proved a more precise version of the Ericksen’s conjec-
ture: requiring certain technical assumptions on regularity concerning the material
properties, they showed that unless the material functions characterizing the fluid
satisfied certain special relationships, the cross section ought to be a circle or the
annular region between two concentric circles.

In solid mechanics, Fosdick and Kao [39] were the first to explore the coun-
terpart to Ericksen’s conjecture in fluids within the context of nonlinear elasticity.
Denoting by (i1, i2, i3) an orthonormal basis in rectangular Cartesian coordinates,
they consider a cylindrical domain, whose generators are parallel to the axis i3,
with bounded and connected cross section A having boundary

∂A =
n

⋃

i=0

∂Ai (5.1)

consisting of n + 1 sufficiently smooth non intersecting closed curves, where ∂A0

is the external boundary of A which encloses all other inner boundaries ∂Ai (i =
1, . . . , n). Fosdick and Kao [39] assume the displacement u to be decomposed into
an axial component w = w(X1, X2) and a cross sectional component v = v(X1, X2)
and consider the following boundary condition

w =

{

0 on ∂A0

wi on ∂Ai (i = 1, . . . , n)
(5.2)

and v = 0 on ∂A. First, they show that in general, rectilinear shear (v = 0) of
cylinders is not always possible, unless the cross-section is a circle or the annular
region between two concentric circles. Then, they analyse the problem which in-
cludes not only an axial shear deformation but also the possibility of cross-sectional
distortion. They use the specific driving force (applied shear) a, as small param-
eter and consider the following perturbation problem for uniformly infinitesimal
boundary data,

a = εā, wi = εw̄i (i = 1, 2, . . . , n) (5.3)

w =
n

∑

i=1

wiεi, v =
n

∑

i=1

viεi,

where ε ≪ 1 is a real non-negative number, ā and w̄i (i = 1, 2, . . . , n) are constant
numbers independent of ε which carry, respectively, the dimensions of force per
unit volume and displacement, and wi, vi (i = 1, 2, . . . , n) are functions depending
of the same arguments of w and v, respectively. It follows immediately from the
assumed form for the displacement field that when ε = 0, there is no displacement
and this has to be expected as there is no driving force. Using (5.3), the balance
equations and the constraint of incompressibility, Fosdick and Kao [39] find vi = 0
for i = 1, 2, 3 and show that v4 is necessary different from zero. Thus secondary
deformations appear at only fourth order.

Another possibility of perturbation approach in order to investigate for sec-
ondary deformations is given by departure from circular symmetry. Mollica and
Rajagopal [83] showed that in this last case the secondary deformations appear
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at first order when the driving force is a fixed value placed without restrictions,
the perturbation parameter being the departure from circularity. The deformation
that they consider takes place between two infinite cylinders eccentrically placed
and it can be driven by an axial pressure gradient or by the axial motion of one
of the boundaries. They use the eccentricity ε which is the distance between the
centers of cylinders as the perturbation parameter. In a Cartesian coordinates
system (X,Y, Z), the equations for two cylinders, whose radii are R1 and R2, with
R1 < R2, are

X2 + Y 2 = R2
2, (5.4)

(X − |−−−→O1O2|)2 + Y 2 = R2
1,

where |−−−→O1O2| is the eccentricity and they let

ε =
|−−−→O1O2|

R1

, (5.5)

be a dimensionless small parameter. Let (R, Θ, Z) and (r, θ, z) be cylindrical co-
ordinates in reference and current configuration, respectively. Then they consider
a deformation of the form

r = R + εv(R, Θ) + o(ε),

θ = Θ + εw(R, Θ) + o(ε), (5.6)

z = Z + f(R) + εg(R, Θ) + o(ε).

At order zero (ε = 0), (5.6) is not the undeformed state (here it is therefore
different from previous case (5.3)), but it is an axially symmetric deformation. For
the problem under investigation, they assume that the outer cylinder is fixed while
the inner cylinder translates in the axial direction by a fixed amount fw. Thus,
denoting by C1 and C2 the inner and outer cylinders, respectively, from (5.6), they
set

εv(R, Θ)|C1
= εw(R, Θ)|C1

= 0,

εv(R, Θ)|C2
= εw(R, Θ)|C2

= 0, (5.7)

f(R) + εg(R, Θ)|C1
= fw,

f(R) + εg(R, Θ)|C2
= 0.

After that, they suppose that the incompressible material is described by the fol-
lowing strain energy function

W (I1, I2) =
δ1

2b

{[

1 +
b

n
(I1 − 3)

]n

− 1

}

− δ2

2
{I2 − 3} , (5.8)

where δ1, δ2, b, n are material parameters. When n = 1, the model (5.8) reduces to
the classical Mooney-Rivlin model (2.3), while if δ2 = 0, it reduces to the power-law
model (2.16). As well, they set

δ1 > 0, δ2 < 0, 1 > n >
1

2
, n > 1, b > 0, (5.9)
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Figure 5.1: Shrink fit of an elastic tube, followed by the combination of simple
torsion and helical shear. (The figure does not respect scales among the various
deformations).

such that from the analysis of Fosdick and Kao [39], the material cannot exhibit a
purely axial displacement when subjected to axial shear, and secondary displace-
ments are therefore necessary. Using (5.6), the boundary conditions (5.7), the
balance equations and the constraint of incompressibility, Mollica and Rajagopal
[83] establish that secondary deformations at first order in ε are possible when
the driving force is not small and the annular region deviates slightly from axial
symmetry.

In the next section we consider a complex deformation field in isotropic in-
compressible elasticity, to point out by an explicit example (extracted from our
work [27]) the situations just evoked, and to elaborate on their possible impact on
solid mechanics. The deformation field takes advantage of the radial symmetry;
therefore we find it convenient to visualize it by considering an elastic cylinder.

5.1 An analytic example of secondary deforma-

tions

For a better understanding of the “real” situation we evoke, let us imagine
that a corkscrew has been driven through a cork (the cylinder) in a bottle. The
inside of the bottleneck is the outer rigid cylinder and the idealization of the gallery
carved out by the corkscrew constitutes the inner coaxial rigid cylinder. Our first
deformation is purely radial, originated from the introduction of the cork into the
bottleneck and then completed when the corkscrew penetrates the cork (a so-called
shrink fit problem, which is a source of elastic residual stresses here). We call A,
B the respective inner and outer radii of the cork in the reference configuration
and r1 > A, r2 < B their current counterparts. Then we follow with a simple
torsion combined to a helical shear, in order to model pulling the cork out of the
bottleneck in the presence of a contact force. Figure 5.1 sketches this deformation.

Of course, we are aware of the shortcomings of our modelling with respect to the
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description of a “real” cork-pulling problem, because no cork is an infinitely long
cylinder, nor is a corkscrew perfectly straight. In addition, traditional corks made
from bark are anisotropic (honeycomb-shaped mesoscopic structure) and possess
the remarkable (and little-known) property of having an infinitesimal Poisson ratio
equal to zero, see the review article by Gibson et al. [46]. However we note
that polymer corks have appeared on the world wine market; they are made of
elastomers, for which incompressible, isotropic elasticity seems like a reasonable
framework (indeed the documentation of these synthetic wine stoppers indicates
that they lengthen during the sealing process)1.

5.1.1 Equilibrium equations

Consider a long hollow cylindrical tube composed of an isotropic incompressible
nonlinearly elastic material. At rest, the tube is in the region

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, −∞ ≤ Z ≤ ∞, (5.10)

where (R, Θ, Z) are the cylindrical coordinates associated with the undeformed
configuration, and A and B are the inner and outer radii of the tube, respectively.

Consider the general deformation obtained by the combination of radial dilata-
tion, helical shear and torsion as

r = r(R), θ = Θ + g(R) + τZ, z = λZ + w(R), (5.11)

where (r, θ, z) are the cylindrical coordinates in the deformed configuration; τ is
the amount of torsion; and λ is the stretch ratio in the Z-direction. Here, g and
w are yet unknown functions of R only. (The classical case of torsion deformation
(4.1) corresponds to w = g = 0, λ = 1.) Hidden inside (5.11) is the shrink fit
deformation

r = r(R), θ = Θ, z = λZ, (5.12)

which is (5.11) without any torsion or helical shear (τ = g = w ≡ 0). The physical
components of the deformation gradient F and of its inverse F−1 are then





r′ 0 0
rg′ r/R rτ
w′ 0 λ



 and





rλ/R 0 0
rw′τ − rg′λ r′λ −rr′τ
−rw′/R 0 rr′/R



 , (5.13)

respectively. Note that we used the incompressibility constraint in order to com-
pute F−1; it states that det F = 1, so that

r′ =
R

λr
. (5.14)

In our first deformation, the cylindrical tube is pressed into a cylindrical cavity
with inner radius r1 > A and outer radius r2 < B. It follows by integration of the
equation (5.14) that

r(R) =

√

R2

λ
+ α, (5.15)

1We hope that this study provides a first step toward a nonlinear alternative to the linear
elasticity testing protocols presented in the international standard ISO 9727. We also note that
low-cost shock absorbers often consist of a moving metal cylinder, glued to the inner face of an
elastomeric tube, whose outer face is glued to a fixed metal cylinder [56].
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where now

α =
B2r2

1 − A2r2
2

B2 − A2
, λ =

B2 − A2

r2
2 − r2

1

. (5.16)

We compute the physical components of the left Cauchy-Green strain tensor B =
FF T from (5.13) and find its first three principal invariants as

I1 = (r′)2 + (rg′)2 + (r/R)2 + (rτ)2 + λ2 + (w′)2, (5.17)

I2 = (rλ/R)2 + (rw′τ − rg′λ)2 + (rw′/R)2 + (R/r)2 + (1/λ)2 + (Rτ/λ)2,

and of course, I3 = 1. For a general incompressible hyperelastic solid, the Cauchy
stress tensor T is given by (1.40). Having computed B−1 = (F T )−1F−1 from
(5.13), we find that the components of T are

Trr = −p + 2W1(r
′)2 − 2W2

[

(rλ/R)2 + (rw′τ − rg′λ)2 + (rw′/R)2
]

,

Tθθ = −p + 2W1

[

(rg′)2 + (r/R)2 + (rτ)2
]

− 2W2(R/r)2,

Tzz = −p + 2W1[λ
2 + (w′)2] − 2W2

[

(1/λ)2 + (Rτ/λ)2
]

, (5.18)

Trθ = 2W1(rr
′g′) − 2W2(w

′τ − g′λ)R,

Trz = 2W1(r
′w′) − 2W2

[

rRg′τ − rRw′τ 2/λ − rw′/(λR)
]

,

Tθz = 2W1(rw
′g′ + rλτ) + 2W2(r

′Rτ).

Finally the equilibrium equations, in the absence of body forces, are: div T = 0;
for fields depending only on the radial coordinate as shown here, they reduce to

dTrr

dr
+

Trr − Tθθ

r
= 0,

dTrθ

dr
+

2

r
Trθ = 0, (5.19)

dTrz

dr
+

1

r
Trz = 0.

5.1.2 Boundary conditions

Now consider the inner face of the tube: we assume that it is subject to a
vertical pull,

Trz(A) = TA
0 , Trθ(A) = 0, (5.20)

say. Then by integrating the second and third equations of equilibrium (5.19)2,3,
we find that

Trz(r) =
r1

r
TA

0 , Trθ(r) = 0. (5.21)

The outer face of the tube (in contact with the glass in the cork/bottle problem)
remains fixed, so that

w(B) = 0, g(B) = 0, Trr(B) = T0, (5.22)

say. In addition to the axial traction applied on its inner face, the tube is subject
to a resultant axial force N (say) and a resultant moment M (say),

N =

∫ 2π

0

∫ r2

r1

Tzzrdrdθ, M =

∫ 2π

0

∫ r2

r1

Tθzr
2drdθ. (5.23)
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Note that the traction T0 of (5.22) is not arbitrary but is instead determined by
the shrink fit pre-deformation (5.12), by requiring that N = 0 when TA

0 = τ =
g = w ≡ 0 (this process is detailed in the Section 5.1.3 for the neo-Hookean
material). Therefore, T0 is connected with the stress field experienced by the
cork when it is introduced in the bottleneck. In the rest of this explanation we
aim at presenting results in dimensionless form. To this end, we normalize the
strain energy function W and the Cauchy stress tensor T with respect to µ, the
infinitesimal shear modulus; hence we introduce W and T defined by

W =
W

µ
, T =

T

µ
. (5.24)

Similarly we introduce the following non-dimensional variables,

η =
A

B
, R =

R

B
, ri =

ri

B
, w =

w

B
, α =

α

B2
, τ = Bτ, (5.25)

so that η ≤ R ≤ 1. Also, we find from (5.16) that

α =
r2
1 − η2r2

2

1 − η2
, λ =

1 − η2

r2
2 − r2

1

. (5.26)

Turning to our cork or shock absorber problems, we imagine that the inner
metal cylinder is introduced into a pre-existing cylindrical cavity (this precaution
ensures a one-to-one correspondence of the material points between the reference
and the current configurations). In our upcoming numerical simulations, we take
A = B/10 so that η = 0.1; we consider that the outer radius is shrunk by 10%,
r2 = 0.9B, and that the inner radius is doubled, r1 = 2A; finally, we apply a
traction, the magnitude of which is half the infinitesimal shear modulus: |TA

0 | =
µ/2. This gives

α ≃ 3.22 × 10−2, λ ≃ 1.286, T
A

0 = −0.5. (5.27)

At this point it is possible to state clearly our main observation. A first glance
at the boundary conditions, in particular at the requirements that g be zero on the
outer face of the tube, gives the expectation that g ≡ 0 everywhere is a solution
to our boundary-value problem, at least for some simple forms of the constitutive
equations. In what follows, we find that, for the neo-Hookean solids, g ≡ 0 is
indeed a solution, whether there is a torsion τ or not. However if the solid is not
neo-Hookean, then it is necessary that g 6= 0 when τ 6= 0, and the picture becomes
more complex. For this reason, we classify as “purely academic” the question:

Which is the most general strain-energy density for which it is possible
to solve the above boundary value problem with g ≡ 0?

Indeed, there is no “real world” material, the behaviour of which is ever going to
be described exactly by that strain-energy density (supposing it exists). Instead a
more pertinent issue to raise for “real word applications” is whether we are able to
evaluate the importance of latent (secondary) stress fields, because they are bound
to be woken up (triggered) by the deformation.
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5.1.3 neo-Hookean materials

First, we consider the special strain energy function which generates the class
of neo-Hookean materials (2.1). Note that here and hereafter, we use the non-
dimensional quantities introduced previously, from which we drop the overbar for
convenience. Hence, the components of the (non-dimensional) stress field in a
neo-Hookean material reduce to

Trr = −p + (r′)2, Tθθ = −p + (rg′)2 + (r/R)2 + (rτ)2,

Tzz = −p + λ2 + (w′)2, Trθ = rr′g′, (5.28)

Trz = r′w′, Tθz = rg′w′ + rλτ.

Substituting into (5.21) we find that

w′ = λr1T
A
0 /R, g′ = 0, (5.29)

and by integration, using (5.22), that

w = λr1T
A
0 ln R, g = 0. (5.30)

In Figure 5.2a, we present a rectangle in the tube at rest, which is delimited
by 0.1 ≤ R ≤ 1.0 and 0.0 ≤ Z ≤ 1.0. Then it is subject to the deformation
corresponding to the numerical values of (5.27). To generate Figure 5.2b, we
computed the resulting shape for a neo-Hookean tube, using (5.11), (5.15), and
(5.30).

Now that we know the full deformation field, (see (5.11) and (5.30)), we can
compute Trr−Tθθ from (5.28) and deduce Trr by integration of (5.19)1, with initial
condition (5.22)3. Then the other field quantities follow from the rest of (5.28).
Finally, we find in turn that

Trr =
1

2λ

{

ln
λr2

2R
2

R2 + αλ
+ (R2 − 1)

[

α

r2
2 (R2 + αλ)

+ τ 2

]}

+ T0,

Tθθ = Trr +

(

R2

λ
+ α

) (

1

R2
+ τ 2

)

− R2

λ(R2 + αλ)
, (5.31)

Tzz = Trr + λ2

(

1 +
r2
1(T

A
0 )2

R2

)

− R2

λ(R2 + αλ)

(where we used the identity 1 + αλ = λr2
2, see (5.15) with R = 1), and that

Trθ = 0, Trz =
r1

√

R2

λ
+ α

TA
0 , Tθz = λτ

√

R2

λ
+ α. (5.32)

The constant T0 is fixed by the shrink fit pre-deformation (5.12), imposing that
N = 0 when τ = g = w = TA

0 ≡ 0, or

(T0+λ2)(1−η2)+
1

λ

∫ 1

η

[

ln
λr2

2R
2

R2 + αλ
+

α(R2 − 1)

r2
2(R

2 + αλ)
− 2R2

R2 + αλ

]

RdR = 0. (5.33)
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Figure 5.2: (a, b) Pulling on the inside face of a neo-Hookean tube. Here the
vertical axis is the symmetry axis of the tube.
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Using (5.33) and (5.23), (5.31), (5.32), we find the following expressions for the
resultant moment,

M = π(r4
2 − r4

1)λτ/2, (5.34)

and for the axial force,

N = 2πλr2
1| ln η|

(

TA
0

)2 − π

4
(r2

2 − r2
1)

2τ 2. (5.35)

We now have a clear picture of the response of a neo-Hookean solid to the
deformation (5.11), with the boundary conditions of Section 5.1.2. First, we saw
that here the contribution g(R) is not required for the azimuthal displacement,
whether there is a torsion τ or not. Also, if a moment M 6= 0 is applied, then the
tube suffers an amount of torsion τ 6= 0 proportional to M . On the other hand, if
the tube is pulled by the application of an axial force only (N 6= 0) and no moment
(M = 0), then τ = 0 and no azimuthal shear occurs at all.

5.1.4 Generalized neo-Hookean materials

As a first broadening of the neo-Hookean strain-energy density (2.1), we con-
sider generalized neo-Hookean materials (2.12). To gain access to the Cauchy
stress components in this context, it suffices to take W2 = 0 and W1 = W ′, where
the prime stands for the derivatives of W with respect to the first invariant, in
equations (5.18). In particular,

Trθ = 2rr′g′W ′, (5.36)

and the integrated equation of equilibrium (5.21)2 gives g′ = 0. By integrating,
with (5.22)2 as an initial value, we find that

g ≡ 0. (5.37)

Hence, just as in the neo-Hookean case, azimuthal shear can be avoided altogether,
whether there is a torsion τ or not. We are left with an equation for the axial shear,
namely (5.21)1, which can be written as

2W ′(I1)w
′(R) =

λr1

R
TA

0 . (5.38)

Obviously the same steps as those taken for neo-Hookean solids may be followed
here for any given strain energy density (2.12), but now by resorting to a numerical
treatment. Horgan and Saccomandi [62] show, through some specific examples
of hardening generalized neo-Hookean solids, how rapidly involved the analysis
becomes, even when there is only helical shear and no shrink fit. Instead, we
simply point out some striking differences between our present situation and the
neo-Hookean case. We remark that I1 is of the form (5.17)1 at g ≡ 0, i.e.

I1 = λ2 +
R2

λ(R2 + αλ)
+

(

R2

λ
+ α

) (

1

R2
+ τ 2

)

+ [w′(R)]2. (5.39)

It follows that (5.38) is a nonlinear differential equation for w′, in contrast to the
neo-Hookean case. Another contrast is that the axial shear w is now intimately
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coupled to the torsion parameter τ , and that this dependence is a second-order
effect (τ appears above as τ 2).

A similar problem where the azimuthal shear has not been ignored, but the
axial shear has been considered null, i.e. w ≡ 0 has been recently considered by
Wineman [130].

5.1.5 Mooney–Rivlin materials

In this section, we specialize the general equations of section 5.1.1 to the
Mooney–Rivlin form of the strain energy function (2.3), which in its non-
dimensional form reads

W =
I1 − 3 + m(I2 − 3)

2(1 + m)
, (5.40)

so that

2W1 =
1

1 + m
, 2W2 =

m

1 + m
, (5.41)

where m > 0 is a material parameter, distinguishing the Mooney–Rivlin material
from the neo-Hookean material (2.1), and also allowing a dependence on the second
principal strain invariant I2, in contrast to the generalized neo-Hookean solids of
the previous section. Then the integrated equations of equilibrium (5.21) read

(

R + mτ 2r2R + mr2/R
)

w′ − (mτλr2R)g′ = (1 + m)λr1T
A
0 ,

(mτλ)w′ − (1 + mλ2)g′ = 0. (5.42)

First we ask ourselves if it is possible to avoid torsion during the pulling of the
inner face. Taking τ = 0 above gives

(R + mr2/R)w′ = (1 + m)λr1T
A
0 , g′ = 0. (5.43)

It follows that here it is indeed possible to solve our boundary value problem. We
find

w = λr1T
A
0

λ(1 + m)

2(λ + m)
ln

[

mαλ + (λ + m)R2

mαλ + (λ + m)

]

, g = 0. (5.44)

However if τ 6= 0, then it is necessary that g 6= 0, otherwise (5.42)2 gives w′ = 0
while (5.42)1 gives w′ 6= 0, a contradiction. This constitutes the first departure
from the neo-Hookean and generalized neo-Hookean behaviours: torsion (τ 6= 0)
is necessarily accompanied by azimuthal shear (g 6= 0). In the case τ 6= 0, we
introduce the function Λ = Λ(R) defined as

Λ(R) = (R + mr2/R)(1 + mλ2) + mτ 2r2R, (5.45)

(recall that r = r(R) is given explicitly in (5.15)). We then solve the system (5.42)
for w′ and g′ as

w′ = (1 + m)(1 + mλ2)λ
TA

0

Λ(R)
r1, g′ = m(1 + m)λ2 TA

0

Λ(R)
τr1, (5.46)

making clear the link between g and τ . Thus for the Mooney–Rivlin material,
the azimuthal shear g is a latent mode of deformation; it is woken up by any
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amount of torsion τ . Recall that, at first sight, the azimuthal shear component
of the deformation (5.11) seemed inessential to satisfy the boundary conditions,
especially in view of the boundary condition g(1) = 0. However, a non-zero W2

term in the constitutive equation clearly couples the effects of a torsion and an
azimuthal shear, as displayed explicitly by the presence of τ in the expression for
g′ above. It is perfectly possible to integrate equations (5.46) in the general case,
but to save space we do not reproduce the resulting long expressions. With them,
we generated the deformation field picture of Figure 5.3(a,b) and Figure 5.4(a,b).
There we took the numerical values of (5.27) for α, λ, TA

0 ; we took a Mooney–
Rivlin solid with m = 5.0; we imposed a torsion of amount τ = 0.5; and we looked
at the deformation field in the plane Z = 1 (reference configuration) and z = λ
(current configuration).

Although the secondary fields appear to be slight in the picture, they are
nonetheless truly present and cannot be neglected. To show this, we consider
a perturbation method to obtain simpler solutions and to understand the effect of
the coupling, by taking m small. Then integrating (5.46), we find at first order
that

w

r1TA
0

≃ (1 + m)λ ln R − 1

2
m

[

τ 2R2 + 2(1 + τ 2αλ) ln R − αλ/R2 − τ 2 + αλ
]

,

g

r1TA
0

≃ λ2τm ln R. (5.47)

Hence, the secondary field g exists even for a nearly neo-Hookean solid (if m is
small, then g is of order m.) Interestingly, we also note that the azimuthal shear
g in (5.47) varies in a homogeneous and linear manner with respect to the torsion
parameter τ and in a quadratic manner with respect to the axial stretch λ, showing
that the presence of this secondary deformation field cannot be neglected when the
effects of both the prestress and the torsion are taken into account. To complete
the picture, we use the first-order approximations

2W1 ≃ 1 − m, 2W2 ≃ m, (5.48)

to obtain the stress field as

Trr ≃ −p + (1 − m) (r′)2 − m
{

(rλ/R)2 +
[

(rτ)2 + (r/R)2
] (

λr1T
A
0

)2
/R2

}

,

Tθθ ≃ −p + (1 − m)
[

(r/R)2 + (rτ)2
]

− m(R/r)2,

Tzz ≃ −p +
(

λTA
0 r1

)2
[

(

1 + 2mλ2
) 1

R2
− 2

R

(

τ 2r2

R
+

r2

R3
+

λ2

R
− 1

2R

)

m

]

+ (1 − m) λ2 − m
[

(1/λ)2 + (Rτ/λ)2
]

, (5.49)

Trθ ≃ rr′g′ − mλr1T
A
0 τ,

Trz ≃ (1 − m) (r′w′) + mλr1T
A
0

[

rRτ 2/λ + r/(λR)
]

/R,

Tθz ≃ (1 − m) rλτ + λrr1T
A
0 g′/R + m(r′Rτ).
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Figure 5.3: (a, b) Pulling on the inside face of a Mooney–Rivlin tube, with a
clockwise torsion. We have setted m = 5.0, A = B/10, r1 = 2A, r2 = 0.9B, τ =
0.5, |TA

0 | = µ/2.
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Figure 5.4: (a, b) Pulling on the inside face of a Mooney–Rivlin tube, with a
clockwise torsion. We have setted m = 5.0, A = B/2, r1 = 0.6B, r2 = 0.9B, τ =
0.5, |TA

0 | = µ/2.



104 Chapter 5. Secondary deformations in nonlinear elasticity

5.2 Final remarks

In non-Newtonian fluid mechanics and in turbulence theory, the existence of
shear-induced normal stresses on planes transverse to the direction of shear is at
the root of some important phenomena occurring in the flow of fluid down pipes
of non-circular cross section (see [40]). In other words, pure parallel flows in tubes
without axial symmetry are possible only when we consider the classical theory
of Navier-Stokes equations or the linear theory of turbulence or tubes of circular
cross section.

In nonlinear elasticity theory, similar phenomena are reported. Hence Fosdick
and Kao [39] and Mollica and Rajagopal [83] show that, for general isotropic in-
compressible materials, an anti-plane shear deformation of a cylinder with non
axial-symmetric cross section causes a secondary in-plane deformation field, be-
cause of normal stress differences. In compressible nonlinear elasticity pure torsion
is possible only in a special class of materials, but we know that torsion plus a
radial displacement is possible in all compressible isotropic elastic materials.

Now a further example is given in the literature from our recent work [27], where
axial symmetry holds and the boundary conditions suggest that an axial shear
deformation field is sufficient to solve the boundary value problem, but nevertheless,
the normal stress difference wakes up a latent azimuthal shear deformation.

In conclusion, from these notes, it comes out that it is not really as cru-
cial to determine the class of materials for which a given deformation
field is possible, as it may be crucial to classify all the latent defor-
mations associated with a given deformation field in such a way that
this field is controllable for the entire class of materials. Indeed, no
“real” material, even when we accept that its mechanical behaviour is
purely elastic, is ever going to be described exactly by a special choice of
strain-energy. Looking for special classes of materials for which special
deformations fields are admissible may mislead us in our understanding
of the nonlinear mechanical behaviour of materials.

5.3 A nice conjecture in solid mechanics

In the example discussed for secondary deformation, we have used a strong
analogy with a cork-pulling problem, by modelling a cork as an incompressible
rubber-like material. When we try to apply the previous results to the extraction
of a cork from the neck of a bottle, the following remarks seem to be relevant.
From the elementary theory of Coulomb friction, it is known that the pulled cork
starts to move when, in modulus, the friction force exerted on the neck surface is
equal to the normal force times the coefficient of static friction. In our case this
means that

√

|Trz(1)|2 + |Trθ(1)|2 = fS |Trr(1)| = fS |T0| , (5.50)

where fS is the coefficient of static friction. Using (5.21), we find that the elements
of the left handside of equality (5.50) are

Trz(1) = (r1/r2)T
A
0 , Trθ(1) = 0. (5.51)
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Figure 5.5: There are two main types of corkscrews: one that relies on pulling only
(left) and one that adds a twist to the cork-pulling action (right). The analysis
developed, indicates that the second type is more efficient.

Now, our main concern is to understand if it is better to apply a moment M 6= 0
when uncorking a bottle, than to pull only. First we suppose the cork is described
by a neo-Hookean model (2.1). Then, to address this question, we note that the
left-hand side of inequality (5.50) increases when |TA

0 | increases; on the other hand,
combining (5.34) and (5.35), we have

(TA
0 )2 =

[

N + 1
πλ2(r2

1
+r2

2
)2

M2
]

(2πλr2
1| ln η|) . (5.52)

It is now clear, that for a fixed value of TA
0 , in the case M 6= 0, it is necessary

to apply an axial force, the intensity of which is less than the one in the case

M = 0. Moreover, Equation (5.52) shows that
(

TA
0

)2
grows linearly with N but

quadratically with M2. With respect to efficient cork-pulling, the conclusion is that
adding a twisting moment to a given pure axial force is more advantageous than
solely increasing the vertical pull. Moreover, we observe that a moment is applied
by using a lever and this is always more convenient from an energetic point of view.
Recall that we made several simplifying assumptions to reach these results: not
only infinite axial length, incompressibility, and isotropy, but also the choice of a
truly special strain energy function.

In the end, we evoke a classic wine party dilemma:

Which kind of corkscrew system requires the least effort to uncork a
bottle?

Figure 5.5 sketches the two working principles commonly found in commercial
corkscrews. The most common type (on the left) relies on pulling only (directly or

2Using the stress field (5.49) it is straightforward, but long and cumbersome, to derive the
analogue for a Mooney–Rivlin solid with a small m of relation (5.52) (which was established for
neo-Hookean solids). However, nothing truly new is gained from these complex formulae with
respect to the simple neo-Hookean case, and we do not pursue this aspect any further.
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through levers) and the other type (on the right) relies on a combination of pulling
and twisting. Notwithstanding the shortcomings of this model with respect to an
actual uncorking, we are confident that we have provided a scientific argument to
those wine amateurs who favour the second type of corkscrews over the first.

Notes

In this chapter we have emphasized another important aspect in the use of
the semi-inverse method: the emergence of secondary flows in fluid dynamics and
of latent deformations (secondary fields) in solid mechanics. Navier-Stokes fluids
or isotropic incompressible hyperelastic materials are clearly constructions of the
mind. No real-world fluid is exactly a Navier-Stokes fluid and no real-world elas-
tomer can be precisely characterized from a given elastic strain energy (in fact, the
experimental data associated with the extension of a rubber band can be approx-
imated by several, widely different, strain energy functions). It is fundamental to
keep this observation in mind in order to understand that the results obtained by
a semi-inverse method can be misleading at times. For example, we know that a
Navier-Stokes fluid can move by parallels flows in a cylindrical tube of arbitrary sec-
tion. To derive this result, we use the semi-inverse method by considering that the
velocity possesses a non-zero component only along the generatrix of the cylinder
and that this field is a function of the section variables only; then the Navier-Stokes
equations are reduced to a linear parabolic equation which we solve by taking no-
slip boundary conditions. This picture is specific to Navier-Stokes fluids. In fact, if
the relation between the stress and the stretching is not linear, then a fluid can flow
in a tube by parallel flows if and only if the tube possesses cylindrical symmetry
(see Fosdick and Serrin [40]). If the tube is not cylindrically symmetric, then what
is going on? Clearly any real fluid may flow in a tube, irrespective of whether it is
a Navier-Stokes fluid or not. In reality we observe the birth of secondary flows, i.e.
flows in the section of the cylinder. The true, meaningful problem is to understand
when these secondary flows can be or cannot be neglected; it is not to determine
for which special theory secondary flows disappear.

Here, an analogous phenomenon in non-linear elasticity is derived where the
counterpart to secondary flows is the notion of latent deformations, i.e. deforma-
tions that are woken up from particular boundary conditions. Boundary conditions
allow semi-inverse simple solutions for special materials, but for general materials
they pose very difficult tasks. Many studies (see Chapter 4) sought to character-
ize the special strain energy functions for which particular classes of deformations
turn out to be possible (or, using a standard terminology, turn out to be control-
lable). For example: which elastic compressible isotropic materials support simple
isochoric torsion? In fact, it is of no utility to understand which materials possess
this property, because these materials do not exist. It is far more important to
understand which complex geometrical deformation accompanies the action of a
moment twisting a cylinder. The range of results to be derived possesses meaning-
ful applications, most importantly in biomechanics. In hemo-dynamics, it is often
assumed that the arterial wall deforms according to simple geometric fields, but
this hypothesis does not take into account several fundamental factors. A specific
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example is the effect of torsion on microvenous anastomotic patency and early
thrombolytic phenomenon (see Selvaggi et al. [116]).

While there exists a remarkable literature on secondary flows in fluid dynamics,
most notably by Rivlin, Ericksen, and Green (see for example the classic paper
[109]), very little is known in solid mechanics about latent deformations. The
main references in that area are: Fosdick and Kao [39], Mollica and Rajagopal
[83], Horgan and Saccomandi [63].

Of course, our work [27] is another result to add to the previous ones, enrich-
ing therefore the literature of latent deformations in solid mechanics. The article
[27] has been noticed in Science magazine [31/08/07, 317, no 5842, 1151, DOI:
10.1126/science.317.5842.1151a] where the paper has been qualified

A very nice application of the theory of nonlinear elasticity,

and noticed also by the Daily Telegraph [22/08/07] and La Recherche [11/07].


