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SECOND ORDER METRIC SINGULARITIES

JENS CHR. LARSEN

Abstract. In a previous paper [21] the author proved existence and uniqueness of geodesics
through second order metric singularities tangent to weakly radial and strongly radial vectors
respectively. In this paper we prove that a C' pregeodesic through a second order metric
singularity can be reparametrized to one of these geodesics. So we have found all C'
pregeodesics through the second order metric singularity.

1. INTRODUCTION

In Riemannian geometry it has become fashionable to consider limits of sequences of
Riemannian manifolds. For instance you can consider limits of Riemannian manifolds that
are convergent in the Gromov Hausdortt metric, see (3,4, 5, 6,7, 8,9]. The limit need not be
a Riemannian manifold. Actually the limit space need not be a smooth manifold.

There are other notions of limits. For example you can consider sequences (M, g;) of
Riemannian manifolds, where {g;} is a convergent sequence with a smooth limit g. The limit
1s then a smooth, symmetric two tensor field. However it need not be positive definite. In this
paper we shall be interested in the case where g has isolated metric singularities. We shall
impose nondegeneracy conditions on the metric singularities.

To this end let (M, g) denote a smooth manifold with a smooth symmetric two tensor g. Let

= = {q € M|g, is degenerate }

denote the singular set. Given a singular point p € = let (U, ¢ ) denote a chart around p with
coordinates (xy,...,x,) and define

f= det{g;}

We are going to assume that df, = 0, rank g, =n — 1 and

0°f (dh(p)) 1s definite
0X; 0X;

it follows that p 1s an 1solated singular point. Let
X: V=TV V=U\{f =0}

denote the geodesic spray and let
X:U—TU
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denote the smooth extension of fX to /. We shall assume that
X(v) =0 Yve M

Recall from [21] the definition of the two metric invariants A;(w) and A;(w). We computed
them 1n a chart and found

I 0 = ; ;

A(w) = — Lyl yy
o) f2(w) 0 x; g
2 0 =1 g

}\":r 1) = . LTl
2(w) ) 31 iw'w

Here ﬁfﬁ 1s the unique smooth extension ﬂij;}. We are going to assume that
Mw) <1 A(w) < —Aj(w).

A p € Z is called a second order metric singularity. Existence and uniqueness of geodesics
for second order metric singularities was proven in [21]. Here we introduced the notion of
weakly radial and strongly radial vectors and proved that there are geodesics tangent to such
directions.

In this paper we shall prove that a C' pregeodesic can be reparameterized to one of the
above mentioned geodesics. Furthermore we show how to parallel translate vector fields
along the geodesics, beyond the metric singularity.

Finally we prove a Gauss Lemma for the exponential map of a second order metric
singularity.

Metric singularities have attracted attention in physics, see [14, 16,17, 18, 19, 29].

2. EXISTENCE AND UNIQUENESS OF GEODESICS

Define
G R' — R
Vi, ..o V) = (v, viva, ..., v V)
Fix an orthonormal basis wy, . . ., w), at the second order metric singularity p with w isotropic.

The restriction of G to {v; # 0} = H also denoted

G:H—H
has an inverse
G ' H—H
(ViyoooyVy) = (1’131’2/""13--*:VH/VIJ

Two curves
Bi: I —M 1= 1,2
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with B37(0) = wy are resolvent tangent provided

d d .
—(G™ oo B)0) = —(G odoB)0)
drt dt
in one and hence any chart (U, ¢) adapted to wy, ..., w,, that1s
o(p) = w;.

Resolvent tangential is an equivalence relation. An equivalence class 1s called a resolvent
tangent. The set of equivalence classes 1s denoted

?}?(Ma E)
We have an injective mapping

T=¢:T,(M,=) — R"

d .
3] — E(G o ¢ o 5)(0)

Existence and uniqueness theorem for geodesics. Given u € 7,(M, Z) then there exists a
unique geodesic

Y : I\{0} — M\Z

such that y o T has resolvent tangent u# where

A
3

'I' )
() =2 3yt
V=(1,...,vy) = T=bdu)

Proof. Existence. According to Theorem 9.4 of [21] there exists a geodesic

vy N0} — M\=

such that for every chart (U, ¢) adapted to wy, . .., w,, ¥ oTis resolvent smooth with resolvent
tangent u, where

TE‘d}*(“?’) — (VLF) = ((VI Yoo 10}3 (2— 11' UF ) 21';13 ey ZUH))
Recall that this means that
b o }f" oT

1s smooth where }
(1}(1:1}‘) = (v, 1—( Loy vn)
Vi
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and
i!(c]} oy o T )0) = (v,y)
dt '
Define
B(t) =voT(t)
with

B'(1 =y o)yt (1)

We find that l |
[3(3‘) = (11, —1’1}‘152, Ca ey —lf‘[}'”.’z)—ﬁ .

2 2
Hence f | l
d . b LN |
E(G o 3)(0) = (vy, 5V2 e 2.1”) = (Viy.ooy V)

Uniqueness. Reverse the process above and apply the uniqueness statement of [21] The-
orem 9.4.

3. PARALLEL TRANSLATION ALONG GEODESICS

Consider now a geodesic
y : I\{0} — M\Z

such that v’ o T is resolvent smooth with resolvent tangent

i € 7;(;'(3, TM)

where
| v2
T(f) = ——=1 sgnt
A
(v,y) = T=d (u)
see [21].

Define p = vyoT.
Given v € T,M let Z denote a smooth vector field along 3 with Z(0) = v. Define a linear
map
L(v) = Fli_ljlgg(é‘z"(f))
and
A, = kerL

Notice that
dim ;‘;F =n — |

see |21].
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Proposition 3.1 Given v € A, then there exists a unique smooth parallel vector field along
[> such that
X(0) =v

Proof. Let
[0 = QFf ()

denote the unique smooth extension of /T to a neighbourhood of 0. Then

| [ ~
AN = — k /
j0 = =2 T © BOBI®
1s smooth at 0. Define A |
; (P
B(Z.6) — (AJ (6)Z u)
0
Then (v,0), v € A, 1s a singular point for B and
—1 % ... x
O 0 ... 0
DBU'.UJ —
O 0 ... 1

So B has a one dimensional unstable manifold

W' (v, 0) = {p(t) = (p1 (1), )|t € J}

W (v, 0) 1s invariant for B so

()=
p'(1) = 1= B(p(1)

It follows that k(#) = ¢ and then

iﬁ} O 6(1’)5:(1')[3};(5)61-

]
P = fo B

So ¢t +— pi(f) 1s the local representative of a parallel vector field along 3 with p,;(0) = v.
It is unique by uniqueness of stable and unstable manifolds.

4. UNIQUENESS OF GEODESICS

Let
v 10, ¢c[ — M\Z

denote a geodesic in M\=. We assume that it can be reparameterized via

n:10,d[ —]0,c|

to a curve d = y om which is the restriction of a regular curve on a neighbourhood of 0. In
other words 6 is a C' pregeodesic through p.
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Then we have the following theorem.

Theorem 4.1 Either
(1) y 1s the restriction of a smooth curve

B:la, bl - M b >0
such that 3}, »p\ oy are geodesics and
B'(0) e T,M

1s weakly radial.
Or

(i1) y o T, T(f) = kt*, k > 0 is the restriction of a smooth curve
B:la,bl = M b>0

. i — | . . .
such that 3 o T abi\ {0} &€ geodesics and

B'(0) € T,M
is strongly radial.

Proof. Let h denote a flat Riemannian metric on an open neighbourhood U of p. Define

.
s(t) = / Vh(y', y')ds
(

()

Define
B(ty=vos'(1) 1€ Ims=10,c]
and
pi(t) = (1) / 1
pa(t) = P (1)
P3(1) = 1
Let

i
Y(x,v, 1) = — Z rfﬁ(f-f’f),’ff,‘r}fk

k=1
i = Qffox,
[=1

fO) =Y filoxx

i j=1

flx) =2 fi(toxx; = £hit, x)

[j=1
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in a chart U, &) centered at the origin ¢(p) = 0 and adapted tow,;,...,w,. Hereey,..., e, 1s

the canonical basis in [R”, Then

| S
10 =- f(tx) rr.";}(’-’f).‘-*‘r'.‘f‘} €k
| ki
T Ph(ay R
L ki
= s Qi (1x)xyiyjex
|
= —Y(x,y,1)
[
Now j,/ff :H
P\ () =B (1) /1= B(t)/ 17 ir [ i% 0 |
l -l v /=
_ O\ %L /o
~(=p1(D) + pa(1)) \i\ i;;
_‘:,‘:«-:.;? '-u-__q_:_.__:l__h.rc_}hb .
and k_ﬂjﬁ{
P (1) = (y o s™1)"(1)
l
foo —1 !
= (V (§ {
6™ )=o)
1y —1 leo—1 e —|1
=y (s (1) -y (s (1) sT(s (1)
Y )sf(r'(r))ﬁ Y ( s'(s= (D) :
Using

— Y(p](f), Pz(f)m f)

a1y
VO GET

1y 1 foo =] 21.01 '
s"'(s7H) = =8/ (T ) h(Y(p(0)), p2(1)

h(ps(1), p2(1) = h(Y' (s~ (D), Y' (s (1) /57 (1) = |

we find that

| . N
p5(1) = ;( Y(p(1)) — p20)h(Y(p(D)), p2(1)) / h(pa2(2), p2(1)))

i) = p3(n /1t =1

Define the vector field

Z: OpU) x RN\{0} x T - R" xR" xR

) —X Ty
Z(x,y,0) = ( Y(x,v,0) — va(Y(x,y,0),v) / h(y,y)
0

|
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We see that l
p'(1) = —Z(p(0))

So
&) = ple') = (&1(1), Ex(), E3(D)

1s an integral curve of Z since

1
NOE ;Z(p(e’))e’ = Z(&(1))

Now
(yon)' () — v € T,M\{0}
S0
Bty = v/l =0
[t follows that
p1(H) — v /|||
p2(t) — v/ [v]|

as 1 — 0. It 1s then immediate that

& — /1l v /1

Now z1s a singular point for Z. Otherwise we have a contradiction with the flow box theorem.
Z.« 18 then a weakly radial or strongly radial vector. z, is weakly radial if

,U)ZE:(E:#sE*aG) [ — —0OC

(24, 2+,0) = 0

If
Y(zi,2:,0) # 0
then
Y(E*,E*,U) — ?I(EME*,O)EI
So

Lw — :I:{j]

and z. 1s strongly radial. We are going to need to compute two linearizations namely
DZ.

when z. 1s weakly radial and when z. is strongly radial. Suppose z. 1s weakly radial. Then

/—l .. 0 [l ... O 0O

o ... =1 0 ... -1 0

DZ. = | a a, b b, ¢
0 0 O 0 ¢,
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assuming 7, = e.
Now
) — )\.1 hl = ?\.3

Since Ay < I, Ay < —Ay, 1 1s an eigenvalue of geometric multiplicity 1 and all other eigen-
values of DZ. have real parts < 0. In fact there are n negative eigenvalues counted with
multiplicity and O 1s an eigenvalue of geometric multiplicity n — 1. Define

F(x) = Y'(x, x,0)

Then [ |
or oY oY
(2) = — (@20 + —(2,2,0) =A@ + M(z) #0
0 X 0 X 0
So the unit length weakly radial vectors constitute an n — 2 dimensional submanifold V of
T,M. This submanifold consists of singular points for Z. These singular points are normally
hyperbolic meaning that DZ. 1s nonsingular on a complement to 7.V in 7.N where

N = {(x,y0)0x e o) [Pyl =1}
Let ¢ denote the flow of the restriction of Z to N. The unstable manifold
W' (z.,2+,0) = {x € N|d,(x) — (24,2+,0) t — —oc}

1s then a onedimensional manifold in N, see [11] p. 39.
So there exists

0.(1) = (pL (1), p2(0), P2 (1))
02 (1) = t tel

such that locally
W (2., 24,0) = {p. (D]t € I}

We have seen that
&) € W'z, z,0)

SO
p(7) € Wi(z,z,0)

By uniqueness of unstable manifolds
p(1) = p.(2)

near t = 0. So

B.(1) = tpl(t) = tpi(t) = B(2)

1s a pregeodesic. This 1s due to the fact that

!
pL (1) = -;Z(P*(f))
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So
RBY(1) = k(nRL(r)

for some smooth function k. From this it follows that 3. is a pregeodesic

unique geodesic with
Y'(0)

weakly radial.

[t remains to consider the case where z, 1s strongly radial. Here

/—l .. 0O 1 0
0O ... =1 0 0
O ... 0 0 0
D, = 0 0O 0 1
0
\ 0
where z, = *e;.
We have used that
o Y* 1 0
— Of1(0) =0

00  h0,e) du

see [21].

0 {)\

0
0 0
0 0
0

0 1/

k> 2

. But then vy 1s the

We see that there 1s an n dimensional stable manifold and an n» dimensional unstable
manifold W". We shall now show that solutions on the stable manifold give rise to pregeodesics

[3 through p with
B'(0)

strongly radial. The projection
m: W' — R
(0, 5,0) = (2, ..., ¥, 0)

has a local inverse
p . W N Wu C REH—I—|

Define the vector field

W(x) = moZ o p(x) xXeW

The origin 1s a singular point with
DW, = 1d

So we can blow up using the blow up maps

FiR\{0} — E = {|[x]| > 1]
G:{0<|lx||<1}=T—1



Second order metric singularities 165

The blown up vector field 1s

) —Hx 1
Vix) — I {IF(W(F X)) x| >

x| — 1\ DGW(G(x)) 0<||x|| <1

[t is the restriction of a smooth vector field also denoted V on a neighbourhood of §"~*. Let
®Y denote the flow of this vector field. It gives rise to the reparameterization function

o1
l s
[PY ()| -1

fo € (@) ze€ 85 "\{z, =0}

T, (1) = (1) = /

1

Now
& () =po F~ 1o (I}f 0 TJ'(I)
E._m(f‘) = PO F‘l O (I}i” O T:jﬂ(!)

are then integral curves for Z.
Define

N &, (Int) t>0
Pt m{éﬁm(ln(—r)) <0

We shall show that
t— 1t '(nt) t>0

1s the restriction of a smooth function ., on a neighbourhood of 0. But we can write

] ]
= — —+ ,f{ g
H::I:rf(j;)“ — | k) 1(5)

for some smooth function k; on a neighbourhood of 0. So

{
Tty =Int/1y + / ki (s)ds

% }'ﬂ

So

Tt expot(r) = (f‘/fu)ﬂ?‘ip(/ ky(s)ds) = w, (1)

The inverse function theorem defines .. So p. i1s a Z invariant smooth curve with
p'.(0) = Dp o DF 1 (V(2))c
= Dp(z)c

/U

|
282

=1 0 |c¢ ceR\{0}
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—

Since z,,+1 # 0 we can reparameterize p, to a smooth curve p = (py, P2, p3) with
P3(t) =t
By Z invariance of p we have
_ I,
p%%z;ﬂﬁﬂ)

We have then previously seen that

B(r) = 1p) (1)

is a pregeodesic. If we arc length parametrize 5> we get a geodesic. We shall do so now. To
this end define

S(1) = / Ve BG)ds / VA
4 ()

where
g(B, B =As’+... A>0

To see that A > 0 let
B(s) = (wys, wg.ﬁ‘j, Cy 1«1»'”.5'2)+. ..

and compute

9

| 0°
295"

Letting h}; = 254(0) we get

| 9% g1
2 arl

I l .
= o’/ Z 4gi(wi + hy; /2gi)° > 0
=2

A=

(0) — Z(nl,J / gii + Zatgu(u, + hi; / 28i)

822+ 8nn 2 aﬁfh

sInce ]
0’ f

{a.r;ax;

(P)}

1s assumed positive definite.
So y
j“ sl(s)ds 1 >0
s(r) = y
— jﬂ sl(s)ds <0

for some smooth function / with
[(0) = 1

Now 3 o s ! is a curve with constant velocity. 3 being a pregeodesic p o s~ is then a

geodesic.
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l

Notice that we can reparametrize & and hence p to p. It follows that 3 o 57" 1s an affine

reparametrization of the original -y that we started with.
Givenv = (vy,...,v,), v, >0 define

1 1.1
V() =Bos (2750

Choosing z suitable this is the geodesic that we seek. In fact

yot.()=Bos (2] F %T (7))

= Bos (r.2%y, \fr))

and

d i | [z,
— (G o B0y = (1, =2 ..., )
(dt

2 Ln+1 i+

vy v>0
s(v) = 5
—vli(v) v<0

2 |
£

Now

for some smooth function /; with /;(0) = % Write

T.(1) = kot? =275 r., 42 sen f
k=k, = —k_
S0
T_I(I)—ﬂ:/‘rllﬂ_%dii
' 0 2 \/§

Substitute 5 = £s(v) = v*{,(v) to get

*.'f_ll[r} 7
B | 21,(v) + vl (v)
| i |
T (1) = — dh
- () /n 2 VI (V)

So

B "1 20(v) + vI(v)
T, o) Jo 2 VvV I(v) v/

which 1s smooth and invertible. Now

%(5—1 o T )0) = ki, (0) / %231(0) — V2Vk

So finally

] "'3' **-:H l ] 27 1 :p;r
LG oy o0 =1, - WKV —= = wi(l, 5~ =)
dt ¥ ZMH—I 2«1}—}—] \/E | 23!!—'—]
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and the Theorem follows.

5. THE GAUSS LEMMA

We shall start this section by defining the exponential map
exp, : D, cT,Mz)—M

To this end let

13 %1 )
T(§) =2 Fv/s sgns

where
UET},}(M,E v >0

Let v, denote the unique maximal geodesic v such that

Y o T,

has resolvent tangent v. Let D, denote the set of resolvent vectors v such that | is in the
domain of definition of y,. Define

exp,(v) = yy(1)

Lemma 3.1. exp, is smooth.

Proof. We have seen that
(t,v) — v, (1.(0)) = H(t,v)

1s smooth. Define for ¢ >0
T.(1) = k(v))F

Then for |

V()

I =

we have 1,(r) = 1. So

l
HH 1;’]: I‘I
) ( ’—_k(ul)1 Yy(1)

1s smooth.
LLemma 5.2, v,.(t) = uxpﬂ(r%v), 1 >0, 1e(y,).

Proof. Define

ﬁ("‘) = Y.(15)

: _4 3 i 9 .
To(8) =27 3(f2vy)35° sign s
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Then
34, ¢! 3
(T (5) = T,()12 37 = T.()F = T,(5¢7)

Taking local representatives we see that

(G~ o B oT.)(s)

= G (v, (17.(5)))

= G oy, 0T (st?)
S0

d ;

E(G_I Q E" DT*)(H] — T(G_l oY, 0 T;)(U}f% — {2y

ds cls

This shows that
B=v:

faw
So |
B(L) =1y 3 (1) =exp,(t2v) = V(D)

Define a scalar product
h:T,M,z) xT,(M,Z) — R

on 7,(M, =) by the formula

[ ﬁz 4 9 - 0 £1i - ,
h(z,z) = Sl (O)zy +4 Z 8 (0)ziz) +4 Z 8iil;
i=2 :

2 dx

0X

=2

We have seen that

h(v,v) # 0

whenever v; # 0.

The Gauss Lemma. Letv € I, and w, € T,7,(M,Z). Then

(Y0, Yo)
hiv,v)

3{dexp,(vy),dexp,(wy)) =

Proof. Define a curve w by

w:R—T,M,Z)

w(s) = v + sw

The tangent vector to w at s = 0 1s w,,. Furthermore define

x(1,8) = Yp(t) = cxpﬁ(ﬁw(s))

g .
Qh(v. w) — h(y. v)h)
3 Vi

169
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Define

£

“1 M
T.(1,5) =2 3w (s)3 1 s1gn ¢

2(t,5) = x(1.(1,5),5)

Then G~ ! o z, is smooth at 1 = 0 and
d
—(G™" 02)(0) = w(s)
di

Now fortr>0

0T,
ez, 2)(t,8) = (1, %) (5)( aT (1,5))2

;
= k()2 Tw(s)321)>
= k(s)w, (3‘}%2_ e

Derivating t — g(z;, z,)(¢, s) for fixed s we find

o
8(2, ) = Z gij © 2(t, $)z7;7; = t7h(w(s), w(s))
1]

We have found the relation
h(w(s), w(s)) = <-’Tf LX) ($)w (‘*)% 2- :

We can differentiate once with respect to s to get

0 1n—2 S 3 _2
2h(v,w) = E ((Xry X0 ) M8V 11 2753 + {IJ LX) () 3 wi(s)? w”{ (0)2 3
0 h(v,v) 8

— a{xr,ﬁ.}}(ﬁ') {}’f., {} -+ 5:”1(1;3 VW /1:1

Now > >
= (Xp, X)) = 25 (Xg, X¢)

which 1s independent of ¢ so

3
% () (1,0) = 2(x,x:)(1,0) = 23 (d exp, (w,), dexp, (1))

Combining the last two derivations the formula in the Gauss Lemma results.
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