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GROUPS WITH NEIGHBOURHOOD CONDITIONS FOR CERTAIN LATTICES

HERMANN HEINEKEN

Introduction. In the theory of infinite groups very often subgroups are considered as "very
near” if only finite indices are involved. This 1s background tor calling an extension of a
soluble group by a finite group almost suluble or to use the term almost equal [8], [4] for two
subgroups that have their intersection as subgroup of finite index in both of them. The scope
of this note 1s nearer to the concept considered by Buckley, Lennox, B.H. Neumann, H. Smith
and Wiegold [1]: they considered groups all of whose subgroups contain a subgroup of finite
index which 1s normal in the whole group and called these subgroups normal-by-finite. In
the sense of the title this is a neighbourhood condition imposed on the lattice of subgroups
and the lattice of normal subgroups. There are two more or less obvious generalizations of
this: One is to impose that every subnormal subgroup of a group contains a normal subgroup
of finite index, and this was examined by Franciosi, deGiovanni and Newell [2]; the other
1s to consider groups G all of whose subgroups possess a subgroup of finite index which 1s
subnormal in the whole of G. For a short description we adopt the wording of the two papers
[1], [2] and speak of a subgroup § of G being subnormal-by-finite if there 1s a subnormal
subgroup T of G that i1s a subgroup of finite index of S. (It is known that 7" can be chosen
normal in S, whereby S becomes a normal extension of T by a finite group).

The purpose of this note 1s to examine the third named class as well as to add to the
discussion of the other classes. The reader will see that the results of the two papers named
before are often the key for statements made here. Here are two examples of results obtained.

Proposition A. Assume that A 1s a subnormal subgroup of the group G and that all subnormal
subgroups of G are normal-by-finite. Then AY/ A is finite-by-nilpotent.

On the other hand it is shown that a weak solubility condition like that used in [2] is
indispensible: an example is given of a group which is residually soluble but not soluble,
such that all subnormal subgroups U are finite modulo Usg.

In addition, the defects of the subnormal subgroups are bounded by 4. On the other hand,
for the class of groups of our main concern we have

Proposition B. Assume that all subgroups of the locally finite group G are subnormal-by-
finite. Then the Hirsch-Plotkin-radical H of G 1s of finite index in G, and there are only
finitely may primes p such that A possesses non-subnormal p-subgroups.

Every group 1s an extension of its finite residual by a residually finite group, and all
conditions mentioned are inherited both by normal subgroups and by quotient groups. For
the class considered in [2] (all subnormal subgroups are normal-by-finite) we have a strong
restriction for the finite residual: 1t 1s a T-group with soluble quotients central. For the class
of groups with all subgroups subnormal-by-finite we find

Proposition C. Assume that all subgroups of the group G are subnormal-by-finite. If S 1s a
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subnormal subgroup of the finite residual G” of G, we have:
(1) If T 1s a subgroup of finite index of S, then 7 is subnormal
(2) If S 1s perfect, it is a normal subgroup of G and it does not possess subgroups of finite
index.

1. JOINS OF SUBNORMAL SUBGROUPS

It 1s well known that the join of two subnormal subgroups need not be subnormal. In our
special case, however, we obtain subnormality. The following statement is known, the proof
1s therefore only sketched.

Lemma 1. Assume that A and B are two subnormal subgroups of the group G and that there
is a subnormal subgroup S of G which is a subgroup of finite index of (A, B). Then also (A, B)
is subnormal in G.

Proof. We may assume that the subnormal subgroup § is normal in (A, B). The proof then
proceeds by induction on the defect d of S: If we have

G=RyCRC...CR;=3S§

—r—

where R, = S, we obtain that R;.; is normal in (A, B,R;) and therefore (,B,R;.) is
subnormal in (A, B, R;) by [6, Theorem 1.6.2] since AR/ R;.| and BR;y/ R, are finite.

The next statement 1s almost obvious.

Lemma 2. Assume that G is a group such that for every subgroup of G is subnormal by finite.
If {Vili € I} is a family of subnormal subgroups of G which is ordered by inclusion, then
also \J.c7 Vi is subnormal in G.

Proof. Let Y = | J,.; Vi. By hypothesis there is a subnormal subgroup Z of G which is a
subgroup of finite index of Y. Without loss of generality we may assume that Z is a normal
subgroup of Y. By [6, Theorem 1.2.1}], all subgroups ZV; are subnormal in G; they form a
finite set which is ordered by inclusion. Now Y = ZV; for some j € 7, and Y is subnormal.

We combine these two statements and obtain

Theorem 3. Assume that every subgroup U of the group G is subnormal-by-finite. Denote
by M the subgroup of G which is generated by all cyclic subnormal subgroups of G. Then all
subgroups of M are subnormal in G and G / M is a torsion group.

Proof. Consider an element x € G which is of infinite order. By hypothesis there is a
subgroup (x") C (x) which is subnormal in G and therefore a subgroup of M. This shows that
G /M is a torsion group. From Proposition A we deduce that finitely generated subgroups
of M are subnormal in G. For every subgroup 7T of M there is a family {R;|i € 7} which is
ordered by inclusion, with the following properties. The trivial subgroup 1 i1s member of the
family. If i € 7 possesses a predecessor j, then there is an element x; such that R; = (R}, x;),
if 1 € 7 has no predecessor, then R; = ﬂf. - ; Rj. Now, it i possesses a predecessor j and R; 1s
subnormal, then so is R; by Lemma 1. If, on the other hand, i does not possess a predecessor
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and all R; with j <1 are subnormal, then the same 1s true for R; by Lemma 2. By obvious
transfinite induction, all subgroups of M are subnormal. LJ

Remark. If all subgroups of G are normal-by-finite, we have the stronger statement that there
1s an abelian normal subgroup N of G such that G / N is a torsion group, since in any group
the subgroup generated by all infinite cyclic normal subgroups is abelian (see [1, Lemma 4.2
p. 394]). This leads to a slightly stronger statement than exhibited in [1]:

Lemma 4. Assume that all subgroups of the group G are normal-by-finite and all finitely
generated subgroups of G are nilpotent-by-finite. Then G is abelian-by-finite.

Proof. We denote the FC-centre of G by F. The infinite cyclic normal subgroups of G are
contained in Z(F). Take a torsionfree subgroup Y of Z(F) such that Z(F) / Y is a torsion group.
Then, by hypothesis, there is a subgroup X of finite index in Y such that X is normal in G; also
we see that G / X is a torsion group. If S is a finitely generated subgroup of G, also SX / X is
finitely generated and possesses by hypothesis a nilpotent normal subgroup 7X / X of finite
index. But then also 7X / X 1s finitely generated and finite since it is a torsion group. We
deduce that X / X 1s finite and G / X 1s locally finite.

By the theorem of [ 1], GX / X possesses an abelian normal subgroup AX / X of finite index.
So A 1s metabelian. By [1, Lemma 4.3], G / C(X) is either trivial or of order 2. In particular,
ANCX) 1s of finite index in G. Itis an extension of an abelian torsionfree group by an abelian
torston group and also nilpotent of class (at most) 2. This yields that A N C(X) 1s abelian. [

2. INTERSECTIONS OF NORMAL SUBGROUPS

The statement of this section 1s certainly known. A proof is added for the convenience of
the reader.

Lemma 3. Let G be some group and H be a fixed finite group. Denote a set of normal
subgroups N of G with G /N = H by M. If D = (. (N, then G / N is locally finite, and
locally nilpotent subgroups are nilpotent.

Proot. If the set M is finite, nothing is to be shown. Assume therefore that M is infinite. We
proceed by induction on the length of normal chains of H., 1.e. of sequences H = Ky C K|
... € K, = | where K4 | 1s a maximal normal subgroup of K;, for 0 < i< m. As initial step
we assume that f is simple. If furthermore H is abelian, G / D is elementary abelian and the
statement 1s true. Assume now that H is simple and non-abelian. Choose a subgroup K / D of
(G / D which is generated by the finite set x,D, x»D, . .. x,,,D of elements. There are only m'
many possibilities to choose m elements from H. For every N € M we fix an isomorphism

oy:G/N—H
and we form the equivalence classes of those normal subgroups K, L € M satisfying

orx(x;D) = o;(x;D) for all i.

. |H| -
According to the remark before there are at most m'”! many such classes. We choose from

every class occurring one normal subgroup Ny, € M and consider M = M, N;. Choose any
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further normal subgroup T € M, then T will belong to one of the equivalence classes, for
instance to that of N;. Now G / (T N M) 1s 1somorphic to the direct product of the quotient
groups G / N; and G / T, and the canonical mapping of the elements x;D € G /D onto x;N;
c G / Ny resp. onto x;T € G/ T yields for those yD € (x|,...,x,) D/D that satisfy y ¢ T
the fact that y & N; (since oy, (yD) = o7 (yD)) This shows that

X1, ... xpMNOT)/MONTYNT/MNT)=1

for every additional normal subgroup 7" € M, and the canonical epimorphism mapping
(X1,...,Xn) D/D onto (x|, ..., x;;) M/ M is an isomorphism. So subgroups of G /D
generated by m elements are finite, for every finite m. This finishes the initial step. Assume
now as induction hypothesis that the Lemma is shown for all groups H* with subnormal
chain length smaller than a number ¢ > |, and assume that A has chain lenght t. Choose some
maximal normal subgroup K of H. Then H / K is a simple group. Let R be the intersection of
all normal subgroups K™ of H with H / K™ = H / K. As before we have the set M of normal
subgroups N of G such that G/N = H and put D = (), N. Let furthermore N be the
set of all normal subgroups ¥/ D of G /D suchthat (G/D) /(F/D)= H /K, and put B/ D
= () pex £/ D. By our initial step we know that (G /D) /(B / D) is locally finite. On the
other hand, it N € M, then by construction B /(B N N) = R, and R has smaller normal chain
length than H, and the induction hypothesis can be applied. This means that B / (["|y. v
(NN B) = B/ D is locally finite. Now also G / D is locally finite as an extension of a locally
finite group by a locally finite group (see for instance |7, Theorem 14.3.1]). If now Y /D is
a locally nilpotent subgroup of G / D, we have that for every N € M, YN / N is nilpotent of
class bounded by some integer £, and Y, C ﬂNEm N =D,

3. SUBGROUPS AND SUBNORMAL SUBGROUPS

We will use now our previous results for groups all of whose subgroups are subnormal-by-
finite. First we find a normal subgroup with torsion quotient group.

Lemma 6. Assume that every subgroup of the group G is subnormal-by-finite. Then G
possesses a unique normal subgroup H such that H is maximal with respect to the property
that all subgroups of N are subnormal. The quotient group G / N is a torsion group.

Proof. By Theorem 3 we see that the normal subgroup N mentioned here 1s the subgroup
generated by all cyclic subnormal subgroups of G. That G / N is a torsion group now follows
from the fact that for every element x € G of infinite order there is a natural number k& such
that (x*) is subnormal in G.

Now we consider locally finite groups of this class. The following is a reformulation of
Proposition B.

Theorem 7. Assume that every subgroup of the locally finite group G is subnormal-by-finite.
(1) If H is the Hirsch-Plotkin-radical of G, then G / H is finite.
(2) If F is the subgroup generated by all cyclic subnormal subgroups of G, the set of primes p,
such that H / F possesses elements of order p; is finite.
Proof. To show the first statement we prove first that for every prime p there is a number f,
such that p-subgroups of G / H are of order at most f,. Choose a maximal p-subgroup P of G.
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By hypothesis there is a subnormal subgroup P™ of G which is a subgroup of finite index of
P. Since it is locally nilpotent, P is a subgroup of H, and PH / H is finite, while PN H is the
maximal normal p-subgroup of G. In turn, if X / H 1s a finite maximal p-subgroup of G / H,
then there 18 a maximal p-subgroup Y of G such that YH = X. Assume that there is a family
{Xi/ H} of finite p-subgroups of G / H of ascending order. Then we have likewise a family
{Y:} of p-subgroups, all containing P, such that the sequence of indices |Y; : P| is monotonic
and unlimited. Now (Y;|i <) /P = Z; / P is finite and possesses a sylow-p-subgroup S; / P.
By the sylow theorems it is possible to choose, for all j, the follower ;4| such that §; C S, ;.
We obtain a sequence of subgroups S; which is ordered by inclusion, and so U;:l Siis a
p-subgroup of G. This 1s a contradiction since the maximal normal p-subgroup P is no longer
a subgroup of finite index of this group. So such a family of subgroups does not exist; there is
a bound f,, such that all p-subgroups of G / H have order not exceeding f,. Having shown this
preliminary statement, we assume that G / H possesses an infinite abelian subgroup V / H.
Since all p-subgroups of G / H are finite, there is an infinite set I' of primes ¢ such that there
are elements of ordergin V / H forevery g € I'. For every such prime ¢ we choose an element
yq of G with the following properties: (y,)? € H while y, € H. Now (...,y,, ...) = Wisa
locally (finite and soluble) subgroup such that WH / H is infinite; it is also the set-theoretical
union of the finite soluble subgroups W, = (y,|q < n). The infinite set " of primes can be
written as the set-theoretic union of infinitely many infinite subsets A; such that no two of
these subsets have an element in common. In every group W, there is a Hall A;-subgroup W,, ;.
and we assume that W, ; C W, ; for all n. Now §; = U:‘;! W, 18 locally finite, the orders
of elements of §; are divisible only by primes belonging to A;, and S; H / H is infinite. By
hypothesis there is a subnormal subgroup 7; of G which is a subgroup of finite index of S;; in
particular, 7; € H. Since the elements have relatively prime orders, the subnormal subgroups
T; and T} centralize each other for j # k. Now we choose elements x; € 7; for every j such
that no x; belongs to H. The subgroup (...,x;...) = A is easily seen to be abelian, and
AH / H to be infinite. There is a subnormal subgroup B of G which is of finite index in A. By
commutativity, BC H,so [AH:H|=|A:(ANH) A: (ANH)| <|A:B|< oo contrary to
construction. This shows that the locally finite group G / H does not possess infinite abelian
subgroups. By [5, 2.5 Corollary, p. 72] infinite locally finite groups possess infinite abelian
subgroups, so GG / H 1s finite, our first statement. We proceed to prove the second statement.
To derive a contradiction, assume that there are infinitely many primes p; such that there are
elements x; F € H / F that are of order p;. Without loss of generality we may assume that
each of the elements x; € H are of order a power of p;. Now (x; i = 1, ...) = X is an infinite
abelian subgroup of G, and there 1s a subgroup 7" C X which is subnormal in G and has finite
index in X. Since 7 is abelian, all subgroups of 7 are subnormal, so 7 C F and XF / F is finite
contrary to construction of X.

Remark. If we consider groups with all subgroups subnormal-by-finite and all finitely
generated subgroups nilpotent-by-finite, we find that they are extensions of a group with all
subgroups subnormal by a locally finite group, and we can apply Proposition B for the quotient
group. It seems an open question whether these groups are already (locally nilpotent)-by-finite
(compare with Lemma 4).
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4. SUBNORMAL AND NORMAL SUBGROUPS

We will prove here Proposition A; we begin by recalling that Z,(G) = Z(G) = {x|x € G,
lx,g] = 1 forall g € G.} and that Z;(G) is defined inductively by Z(G) / Zy—1 (G) = Z
(G / Z;— (G). For brevity we also make use of the notation Ug; and % for the biggest normal
subgroup mcluded in resp. the smallest normal subgroup containing U.

Theorem 8. Assume that every subnormal subgroup of G is normal-by-finite. If S is a finite
subnormal subgroup of defect n of G, then S/ Z,,_, (SY) Is finite.

Proof. The theorem is true for n = | with Zy(G) = 1. Assume now that n = 2. Then S is a
finite normal subgroup of S“ and therefore Cy (S) is of finite index in SY and a subnormal
subgroup of GG. By hypothesis there 1s a G-invariant subgroup C of finite index of Cg ().
By construction, C is of finite index in SY and C C Z (§%). This shows that the theorem is
true for n = 2. Assume now that n = k > 2 and that the theorem is proved for all pairs G*
ST with §* subnormal of defect at most k — 1 in G*. We construct the series

G=VyCV,C...CV,=§,
where Vi) = S¥ for 0 < i < n — 1. Again, S is a finite normal subgroup of Vi—, so
Cy, , (5) 15 a normal subgroup of finite index of V;_;. It follows that Cy,__, (S) contains a

G-1nvariant subgroup C of finite index, and C € Z(V,). Now V,_; / C1s a finite subnormal
subgroup of defectk — 1 of G/ C, so (Vy,C)/ Zi—»(V, / C) is finite by induction hypothesis.
The statement now follows from Z,_»(V, / C) C (Z,_; (V) / C. [

As usual we denote by HV the intersection of all normal subgroup K ot H with H/ K
nilpotent (the nilpotent residual). Now we deduce trom Theorem &:

Corollary 9. (Proposition A) If every subnormal subgroups of G is normal-by-finite and S is
some finite subnormal subgroup of G, then S© is finite-by-nilpotent.

Proof. Assume that S has defect n. By Theorem 8, (§Y)/ Z,_(S%) is finite. So there is a
finite set A of conjugates x~! Sx of S such that

(x ' Sxlx~'Sx € AYZ,_(SY) = SU.

Since Sis finite, also T = (.r_]S,r xSy € A) 1s finite (see for instance [6, Theorem 1.3.3]),
and for all k > n we have (59);, = (TZ,_, (59)), = T, because the subgroup Z,,_, (U) 1s the
marginal subgroup to the commutator word of length n. In particular, (SON = TN is a finite
normal subgroup of G, and

TN = (7 'SoN |x 1 Sx € A)

(see |6, Theorem 4.4.1)).

The next statement 1s now immediate.

Corollary 10. Assume that all subnormal subgroups of G are normal-by-finite. If S is a
perfect finite subnormal subgroup of G, then SY is finite.
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5. LOCALLY SOLUBLE GROUPS

In the context of the groups considered in the previous section, Franciosi. de Giovanni
and Newell [2] have paid particular attention to groups all of whose epimorphic 1mages,
not I, possess abelian subnormal subgroups, not 1, and have shown that these groups are
metabelian-by-finite (e [2, Theorem 3.4]). As we shall see in this section, this condition
can not be weakened to local solubility. The example showing this will be a residually
(finite and soluble) group such that the lattice of normal subgroups which are contained in
the commutator subgroup 1s a decending chain of infinite length. The following statement 1s
crucial.

Lemma 11. Ler p, g be two different odd primes. Further, let A be a finite split extension of
an extraspecial p-group N by some group B such that N is the only minimal normal subgroup
of A, and Z(A) = N'. Then there is an extraspecial g-group M such that A operates faithfully
on M / M" and all elements of M" are left invariant. If M is chosen of minimal order with this
property, then in the split extension AM of M by A, (canonically defined), every subnormal
subgroup S of AM with SN\ M # SN NM contains M’', and every subnormal subgroup T of
AM with TN M # T NMN' contains M.

Proof. The first statement (existence of M) can be done by induction on the order of A, the
proof 1s left to the reader. As to the second part, we find that there is an element x # 1 of order
p in § and by construction |M : [M, x]M'|P < |M : M'|. Since p > 2, we find that [M, x] C M’,
and the statement follows from § C [M, x| since the orders of M and of (x) are relatively
prime. Accordingly in T we find an element y of order p which will operate without fixed
points on M / M’ (by minimality of M), so T C [M,y] = M. (]

Example. We modity a method given by Hawkes [3, Theorem, p. 291] and construct a
sequence of groups by the following prescription: First we define a sequence {p;} of odd
primes such that, for each i, p;;| 1s not a square modulo p;. Next we define some extraspecial
pi-group A,. If A, 1s already defined, then A, 1s a split extension of an extraspecial p, -
group K, .| by a group B,,; | isomorphic to A, such that K" +n + 1 = Z(A,.;) and K, is of
smallest possible order. In particular, we have [Z(B,4), K,1] = Ky, and K, / K}, | 1s a
chiet factor of A, (here the special choice of the primes comes 1n; if the sequence of primes
1s only taken such that the follower is different from its predecessor, the interval [K,, ;| : K, il
in the lattice of normal subgroups may also be a diamond). Having constructed these groups
A; we remember the existence of endomorphisms

XitAj — Aig)

and of epimorphisms
Bit A — A

which are obvious by the construction; we define them in such a way that x*” = x for

all x € A;. Consider the (unrestricted) direct product P of all A;, and define the following
subgroups D,: the n-th component of D, consists of all elements of A, if x € A, is the
n-th component of some element in D, its (n — i)-th component is x”*—!%=i_while its
(n 4 i)-th component 1s x“ %+ =1 By the construction we have D,, C D, for all n, and
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also D, = A, for all n. So all D,, are soluble, and D* = | J,_, D, is a locally soluble group. By
the construction of this set-theoretical union we see that normal subgroups of D* are either
some term (D*)" of the derived series of D* or contain (D*)’. Consider now a subnormal
subgroup S of D*, and let m be maximal such that the first m components of every elements
of S, consider as element of P, 1s 1. Then, by the preceding Lemma, (D*)#"+3) C § anormal
subgroup of D* which is of finite index in D* and in S. The sequence of primes {p;} may be
the alternating sequence of the primes 3,5 as is easily checked. Using the results of Hawkes
[3] we see that in D™ all subnormal subgroups have defect at most 4.

6. THE FINITE RESIDUAL

, * F _ , , S - it
For any group G we will put G7 = ﬂw:brl - ~ U and call this subgroup of G the finite
residual of G. In our case the finite residual have a particular structure.

Lemma 12. Assume that every subgroup of G is subnormal-by-finite. Then if S is a perfect
subnormal subgroup of G”, it is a normal subgroup without subgroups of finite index.

Proof. We proceed by induction on the defect of S, showing first that S does not possess
subgroups of finite index. For the initial step we assume that S 1s normal in & and that §
possesses subgroup 7 such that |S : 7| is finite. The number of conjugates of T is S is finite,
so there is a normal subgroup T of finite index of S. Consider now the set of conjugates of
T in G and call D the intersection of all of these conjugates. By Lemma 5 we know that
S/ D is locally finite. Assume that H / D 1s the Hirsch-Plotkin-radical of § / D. By Lemma
5. H/ D is nilpotent. Since only finitely many primes occur as orders of elements of S/ H
and by lemma 7 the orders of p-subgroups of S/ H are bounded by some number f,. Now
S/ H 1s finite since only finitely many primes occur, and the perfectness of S together with
the nilpotency of H/ D leadsto S/H # 1. Let W/ H = Cg; 5 (S/H). By finiteness of
S / H we have that W is a subgroup of finite index in G, and W ¢ § by noncommutativity of
S/ H, contrary to S C G”. So the normal subgroup S of G which is contained in G” has no
subgroups of finite index. Assume now that we have shown the same for perfect subnormal
subgroups 7T of defect k that are contained in G . Let S be a subnormal subgroup of G with
the same properties, but of detect k + 1. There 1s the series

G:V{]CVIC...';V;“;VK.{_l:S

such that V,.; = S" for all natural i. So the perfect subnormal subgroup V; does not possess
subgroups of finite index, and the same is true for the normal subgroup U of V; = V{ . Now
all perfect subnormal subgroups of G7 are shown to be without subgroups of finite index.
We still have to show that all perfect subnormal subgroups S of G are normal subgroups
of G. Using the same series as betore for a subnormal subgroup S of defect k > 1, we consider
S as a subnormal subgroup of defect 2 of V)., and remember that V, | = V{_,. There is an
element x € V,_» that does not normalize S. This element x is either of finite order or some
subgroup (x™) is subnormal, and [[...[y,x™], ... ], "] = | whenever the number of entries
X" occurring exceeds a fixed number 7. Therefore there is a finite number s such that C = S
= (§¥ |0 < r < s5). Let s be minimal with this property. Then A = (¥ [0 < r < r — 1)
= CbutAA* = C. SinceC* = C,weobtam C/A=C/A". If B=AUA", wehave C/B
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= (A/B)x (A*/B)and A* /B= C/A= C/A" = A/B. Using this isomorphism of the
two direct factors we have a subgroup K /B of C /B such that KA = KA* = Cand K U A
= K UA* = B. By hypothesis there 1s a subnormal subgroup L of G suchthat K € L C B
and |K : L| < oo. The subnormality of L yields that the sequence A, [A, L], [[A,L], L], ...
will lead to subgroups of L U A = B after a finite number of steps, and so L / B 1s nilpotent.
On the other hand, K / B = A / B 1s perfect, so K # L, and LA 1s a proper subgroup of finite
index of C. Since C is a perfect normal subgroup of V,_; = V{_,, this is impossible by the
first part of our proof. So the defect of § can only be | in G and § 1s normal 1in G. L]

We obtain also the following statement on quotients of perfect subnormal subgroups.

Lemma 13. Assume that every subgroup of G is subnormal-by-finite and that A and B are
two perfect normal subgroups of G”. Then there is no normal subgroup K C A N B of G”
such that AK / K = BK / K # 1.

Proof. Since AN B C K we have
AK/K=A/(ANK)=ABNK)/(ANK)YBNK)

and, by symmetry,

ABNK)/ANKYBNK)ZAK/K=BK/K=BANK)/(ANK)BNK),
furthermore

ABNK)NBANK)=ABNK)NBYANK)=(ANB)YBNK)ANK)
AN B C K now yields
ABNK)YNBANK) =(BNK)YANK).

we have seen

AB/(ANBYBNK)=ABNK)/(ANK)YBNK)x BANK)/(ANK)BNK)
with both factors isomorphic by an isomorphism, say, 0. The subgroup U /(AN K) (BN K)
of AB /(AN K) (BN K) consisting of the elements aa” (AN K) (BN K) satisfies the conditions
UA = UB =AB; UNABNK)=UNBANK)=(ANK) (BNK). The subnormal
subgroup V of G which is of finite index in U can be chosen such that (A N K) (BN K) C U,

and U /(A N K) (BN K) is nilpotent by the same argument as in Lemma 12. So V # U; but
then also VA M B is a (proper) subgroup of finite index of B, a contradiction to Lemma 12,

For more explicit statements we would for instance need more facts on the normal extensions
(automorphism groups) of the so-called Tarski monsters than seem to be known just now.
In the non-perfect case we find

Lemma 14. Assume that every subgroup of the group G is subnormal-by-finite.
IfT C S C G with S subnormal in G and |S : T| < o, then also T is subnormal in G.
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Proot. We will proceed by induction on the defect of §. For our initial step we assume
that § 1s a normal subgroup of G. Since T 1s of finite index in §, there 1s a subgroup T7 of
finite index of S such that 77 C T C S C N(T7). To derive a contradiction, we assume
further that 7 is not subnormal in §; in particular, S /77 1s not nilpotent. Denote by D the
intersection of all normal subgroups N of Swith S /N = S§/T". By Lemma 5 we know that
S/ D 1s locally finite and that its Hirsch-Plotkin-radical H / D is nilpotent, furthermore we
deduce from Lemma 7, that S / H is finite. The centralizer C¢; (S / H) 1s of finite index in
G/ H, and so G” / H centralizes S/ H showing that S/ H is abelian. We have already seen
that S / T is non-nilpotent, therefore S / D cannot be nilpotent and S # H. Pick a prime p
dividing the order of § / H and choose a maximal p-subgroup P/ D of S/ D. Since S/ D i1s
locally finite and (P / D)/((P / D) "(H / D)) is finite, we find (HP / D)N¢g ,p (P /D)= G /D
by the Frattini Lemma. Put K / D = Ng , p (P / D). By hypothesis there is a subgroup Kt /D
of finite index of K / D which is subnormal in G/ D. Now (K™ /D) (HP /D) and (K" / D)
(H / D) are of finite index in G/ D. Also P/D ¢ K* /D since P/ D is not subnormal in
S/ D. This shows that also P/ D ¢ G7 contradiction P € § € G7. This contradiction
shows that our assumption that S / 7 1s non-nilpotent was wrong. The initial step 1s proved.
Assume now that the lemma 1s proved for all subnormal subgroups ot defectup to k — 1, where
k > 1, 1n other words, finite epimorphic 1mages of such subnormal subgroups are nilpotent.
Consider a subnormal subgroup § of defect £ with the canonical subnormal sequence

G=LyCLC..CL,_,CL, =S5

where L;.; = S for 0 < i< k. Again, consider a subgroup T of S of finite index with
intersection 77 of all S-conjugates of T, and denote by D the intersection of all normal
subgroups N of S satisfying S /N = S/ T". As before we assume taht 7" is not subnormal in
Sandso S/ T" and S/ D are not nilpotent. If H / D is the Hirsch-Plotkin-radical of S/ D, it
1s nilpotent and S / H is finite. By a famous theorem of P. Hall (see for instance [7, Theorem
1), S/ H' is not nilpotent. We may therefore assume without loss of generality thet H' = D
and H / D 1s abelian. For a prime p dividing the order of S/ H we consider the maximal
p-subgroup P/ D of S/ D. Because of the finiteness of S/H we may apply the Frattini
Lemma for S/ H to obtain (S/H) Ny, _, /) (PH/H) = Ly_,/ H. Again the finiteness of
S/ N yields that N, |,y (PH/H) 1s a wbwl oup of finite index of L;_; / H and therefore
subnormal. But then alsD its intersection with S / H, that is Ny , ; (PH / H), 1s subnormal, and
PH / H 1s a normal subgroup of S/ H. Now all maximal p-subgroups of S/ D are conjugate
to P/ D, and the Frattini Lemma yields (S /D) N;,  ,p (P/ D)= L;_, /D. By hypothesis
there 1s a subgroup W/ D of finite index in Ny, _, ,p (P / D) which is subnormal in L, / D.
Denote by K / D the complementof (HNP)/ D in H / D. Since H/ D is commutative and of
finite index, the same applies for K / D, and since the elements have relatively prime orders
we have K /D = [K /D, P/ D] xCg p (P/ D); again without loss of generality we may
assume that Cg ,p (P /D) = (WN K)/ D. Furthermore, R /D = [K /D, P/ D] is a normal
subgroup of Ly /D and [R/D, W /D] # R/ D since W/ D 1s subnormal and intersects
R / D trivially. Consider a maximal subgroup M / D of R / D which contains [R / D, W / D].
Then (H /D) (W /D) € N, ,py and M /D has only finitely many conjugates in L
The intersection M / D of all conjugates of M / D under L, / D is therefore of finite index
in K /D, and S /M™ is finite and non-nilpotent. Now also (L, /M*)/ C;, _, s+ (S/MT)
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is finite and nilpotent and we obtain that also the subgroup (S /M) / Z(S / M™) is nilpotent.
This is a contradiction to the non-nilpotency of S / M. This finishes the induction argument.

Proposition C now follows from Lemma 12 and Lemma 4. Now we have a look at finite
residuals of the second class of groups considered in this note.

Lemma 15. Assume that all subnormal subgroups of the group G are normal-by-finite and
that N is a residually finite normal subgroup of G which is contained in G”. Then N C Z(G”).

Proof. Assume W is a subgroup of finite index of N. Then there is a normal subgroup W+
of finite index in &V, and this is a subnormal subgroup of G. By hypothesis WT™ = (W) is
of finite index in W*. Now N/ W™ is a finite normal subgroup of G/ W™ and C/ W+
— C{;;p,f~—+ (N/ W—i__l_) 1s of finite index in Gf W**. This shows [N, GF] C W+t C W
C W for all subgroups of finite index W of N, and [N, GF1C NP =1.

Lemma 16. Assume that all subnormal subgroups of the group G are normal-by-finite. If N
is an abelian normal subgroup of G which is contained in G, then N C Z (G”).

Proof. Consider an element x € N, we want to show that x belongs to Z(G”). Consider the
smallest normal subgroup X of G which contains x. If x 1s of finite order, the normal subgroup
X 1s of finite exponent and abelian and therefore residually finite. By the preceding Lemma
we have that X C Z (G”) in this case. If x is of infinite order, there is a subgroup (x") of finite
index in (x) which is normal in G. Now X is abelian and an extension of an infinite cyclic
group by a group of finite exponent, so X is residually finite also in this case, and X C Z (G”).
[n particular, x € Z (G7) forall x € N.

The last statement can be strengthened considerably; we obtain

Lemma 17. Assume that every subnormal subgroup of the group G is normal-by-finite and
that N is a soluble normal subgroup of G which is contained in G”. Then N C Z (G”).
Proof. Since N is soluble, it has a characteristic series with abelian factors. By the preceding
Lemma, all these factors are central in G and therefore also in N. As a first step we deduce
(1) N 1s nilpotent.

Now we apply [2, Corollary 3.3] to obtain that N possesses an abelian normal subgroup K
of finite index. Certainly K 1s subnormal in G, and by hypothesis K = L 1s of finite index
in N. Now L C Z (G7) since L is abelian, and finiteness of N /L yields [N,G7 ] € L. We
summarize
(2) N / Z(N) 1s finite and abelian.

Choose a maximal torsionfree subgroup I of Z(N). Since F'1s a subnormal subgroup of G,
we know that F'; = H 1s of finite index in F, and so N/ F and N / H are torsion groups and
also
(3)(N/H)/Z(N / H) 1s finite and abelian.

Consider any element xH of N/ H. This element is of finite order and X / H = (xH)¢/
— (x)“ H / H is a nilpotent group of class 2, of finite exponent, and with a centre of finite
index. It follows that X / H is residually finite, and by Lemma 15, X/ H C Z (G / H) and
also xH € Z (G” / H) for every xH € N/ H. So
(4) N / H 1s abelian,
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and since N / Z(N) is an abelian torsion group, also N’ is a torsion group, so from N’ C H we
obtain
(5) N 1s abelian.

The result now follows from Lemma 16. L]

We are now in a position to prove our statement on G7 .

Proposition 18. Assume that every subnormal subgroup of the group G is normal-by-finite.
Then the finite residual G” is a T-group with the following additional property: If M is a
normal subgroup of G”, then |M,G” ] is perfect and does not possess subgroups of finite
index.

Proof. Assume that S is a subnormal subgroup of G”. Clearly S is also subnormal in G, and
there is a G-invariant subgroup L of S such that |§ : L| is finite. By Theorem 8 there is an
integer k such that (S¥ / L)/ Z, (S© /L) is finite. Now by Lemma 15 and Lemma 17 (§“ / L)
/7, (SY /L) is abelian and S /L C Z (G /L). So [SY.G7] C L and S is normal G” .
This shows that G is a T-group. The additional property follows from the fact that soluble
quotients are central, so ([M, G 1) [IM,G”7], G"] C [M,G”] for all normal subgroups M
of G which are contained in G . O
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