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THE SIMPLICIAL COMPLEX OF GRAPHS OF GROUPS

RENFANG JIANG'

Abstract. Graphs of groups with length functions are defined to parametrize simplicial G-
trees. Collapses of graphs of groups define a partial order and a simplicial structure on the
set of simplicial G-trees. There is a bijective continuous map from this simplicial complex
to the space of non-abelian simplicial projective translation length functions of G. Any two
small splittings of F,, are connected by a sequence of blow ups and collapses.

0. INTRODUCTION

Let & be a group with actions on trees. The G-trees can be parametrized by the space of
the translation length functions. The outer automorphism group Out(() acts on it. Culler and
Vogtmann [5] defined the outer space, which is the space of free F,-actions on simplicial trees.
From the Bass-Serre theory, a simphlicial G-tree 1s encoded by a quotient graph of groups.
We construct a stmplicial complex C(G). Two quotient graphs of groups are equivalent if
they have the same translation length function up to a scalar factor. The vertices of C(G)
are equivalence classes of quotient graphs of groups of G-trees. An elementary collapse of
a graph ot groups 2l is a graph of groups obtained from 2 by squeezing an edge to a vertex
with the amalgamated free product or the HNN-extension as the new vertex group. The
composition of elementary collapses is called a collapse. This defines a partial order and a
simplicial structure on C(G). Two vertices are adjacent if one 1s a collapse of the other. The
group Out(G) acts simplicially on C(G). The stabilizers of vertices are explicitly described
in Theorem 8.1 of [2]. If G 1s a finitely presented group, the subcomplex of reduced and
small graphs of groups is finite dimensional. We prove that there 1s a continuous bijective
map between equivalence classes of minimal non-abelian graphs of groups and non-abelian
projective translation length functions. Finally, we study the most important special case
G = F,, the free group of rank n. We prove that any pair of small splittings of F,, are
connected by a sequence of blow ups and collapses.

1. THE SIMPLICIAL COMPLEX C(()

1.1. A graph of groups with a length function. Fix a group G. A G-tree 1s encoded by
a quotient graph of groups. In this paper all G-trees and all graphs of groups are minimal
and non-trivial. To define equivalent graphs of groups, we need to specity their translation
length functions. In order to specity the translation length functions, we need to specify the
isomorphism between G and the fundamental group of the quotient graph of groups. This
leads to the following definition. By a graph of groups with a length function (L, T, g) we

Partially supported by NSA grant MDA 904-95-H-1039.



[18 Renfang Jiang

understand:

(1) a graph of groups A = (A, A),
(i) amap L : E(A) — R™,
(111) a maximal subtree T of A,
(1v) amap g : E(A) — G.
The above data are assumed to satisty the following conditions.

(a) The vertex groups A, (¢ € V(A)) and the edge groups A, (¢ € E(A)) are subgroups
of G.

(b) A is a simplicial graph with the edge-length function L.

(c) gle) = 1 tore e E(T).

(d) It e € E(A) — E(T), exactly one of g(¢) and g(e) is non-trivial.

(e) o, = ad(g(e)).

(f) The homomorphism ¥ : 71(A) — G defined by

uim(s) = stors € A,,
¥ (e) = gle)g(e) ' fore € E(A),

restricts to an 1isomorphism vy} : (A, a) — G.

[n this paper, all graphs of groups are graphs ot groups with length functions. If there 1s no
ambiguity, we will simply call a graph of groups with a length function a graph of groups. For
a graph of groups (L, T, g), let [y be the translation length function of the 71, (%, a)-action

on the universal cover tree (2, a) (cf. (1.16) of [1]). We then call ly o (Yp)~! the translation
length function of AL, T, g).

1.2. Equivalence of graphs of groups. Let & = (¢, {v}) : A — B be an isomorphism of
graphs of groups (cf. Definition 2.1 of [1]). Let L, and Ly be positive edge-length functions
of A and B, respectively. If ¢ : A — Bisanisometry with respect to the shortest-path metrics,
then @ : A(La, Ta,ga) — B(Lp, Ty, gp) 1s called an isomorphism of graphs of groups with
length functions.

Multiplying the edge-length function L by a constant ¢ yields another edge-length function
cL. Graphs of groups 21(L, T, ¢) and A (L', T', ¢") are equivalent if there 1s an isomorphism
O AL, T,g) — AL, T, ¢") for some ¢ > 0, such that the following diagram commutes

G G
(%A, a) - (A a’)

:Ild

4 ! - - " . . .
where 1];;:1 and L]le; are defined by (1.1)(f). The isomorphism @ is called a natural iso-
morphism. By 2.9 of [1],

¢, = ad(y) o dP,, where y € m (', d') and 8P = (b, { .}, {d.}, {0.}). (1.2.1)

For the simplicity of notations, we assume that & = 0P if there is no ambiguity. The following
theorem explains the above definition.
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1.3. Theorem (Theorem 1.6 of [6]). Let X and Y be minimal non-abelian simplicial G-trees
with translation length functions /x and Iy, respectively. Form graphs of groups

G\\X — QI(LA} ?;hgﬂ)*
G\Y = B(Lg, T, gp).

Let @ € Aut(G). The following conditions are equivalent.
(@) Iy(p(g)) = Ix(g) forall g € G.
(b) There exists an isomorphism ® : A(Ly, T4, g4)
wing diagram commutes

» SB(Lg, Ty, gg) such that the follo-

3

G M G
7T, (2, ) > (B, ¢(a))

<j:|“

where P, and {3

ey

are isomorphisms defined in (1.1) (f). §

1.4. Corollary. Non-abelian graphs of groups (L, T, ¢) and (L', T’, ¢') are equivalent if

and only if their translation length functions are the same up to a scalar factor, i.e. !mc(q;f‘ ) =
' . _

clyr o (= )~ for some ¢ > 0. B

1.5. Collapses of graphs of groups. Let (L4, T4, 24) be a graph of groups. Let ¢; €
E(A). An elementary collapse of A(Ls, T4, g4) 18 a non-trivial graph of groups B(Lg, Ty, ¢p)
obtained from A(L4, T4, g4) by squeezing ¢, to a vertex b. Let B' be a graph consisting of one
geometric edge, ¢;. Then B is a subgraph of A. Let B’ be graph of groups defined as follows

B, = A, forx = 9pe1,0,¢;,¢;,and ¢, and B, = o, for x = ¢;, and 2.

Thus, B’ = 2|z is the subgraph of groups of 2 (Corollary 1.14 and (2.15) of [1]). Note that

Apyer * A, Ay e if 9p €1 # 01 ¢y,

. _ . (1.5.1)
(«45}..{:1 verje o (s)ey = o, (8),s € A.:q) if 9pe; = 9 €.

TT](%!,EEH] = {

[t follows from (2.15) of [1] that i : 71;(B’, 00 ¢;) — (A, 0p €)) is injective. Let h, e be
the shortest edge path in T4 from ag to 9¢ ¢, then the following composition 1s a injective
homomorphism.

2

) L

'}’I[(QL ﬂ{j) ; G.

adthy, o,

(B, dpey) — (A, 00 €1)

Let the vertex groups B, (a € V(B)) be defined by

A, if a # b.
B{T — { 7& =

)| . / . g ( ] 52)
(P, oad(hy, ) oM (B, 9pe)) ifa=0>b.
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The edge length function 1s given by Lg = La|ga)— (e, 7,1- The maximal subtree Ty 1s either
Ty —{e, e piter € E(Ty) orTyif ey & E(Ty). Finally, gg = galrm. By Proposition 2.8
of [6], B(Lg, T, gp) 1s a graph of groups. While B is called an elementary collapse of 2L, A
is called an elementary blow up of °B. The composition of elementary collapses is called a
collapse.

1.6. Simplicial complex C(G). Collapses define a partial order and a simplicial structure on
the set of equivalence classes of graphs of groups. Namely, 20 <5 if 2 is a collapse of B,
and (g, ..., 2,) 15 an n-simplex 1if Ay < ... <A, where %, is the equivalence class of ;.
Let C(G) be the simplicial complex.
1.7. Aut(G)-action on C(G). LetQU(L, T, g) be a graph of groups, and let ¢ € Aut(G). Define
a graph of groups @(RU(L, T, g)) = A (L,,T,, g,) as follows:
(1) A, =Aand T, =T,
(1) (A,)y = @(A,) and (A.), = @(A,) fora € V(A)and e € E(A),
(111) g.(e) = @(gle)) fore € E(A),and L, = L.

By (1.2), inner automorphisms of G fix every vertex of C(G). So Out(G) acts on C(G).

1.8. Proposition Let A(L, T, ¢g) and A (L', T', ¢’) be graphs of groups.

(a) (AL, T, g))1s agraph of groups.

(b)y ML, T,g) =X (LT g"hifand only it @(RUL,T,¢)) = @CU (L', T, g").

(c) UL, T, o) <AL, T gy itand only if @(RU(L, T, 2))< (A (L, T, 2)).
In particular, Aut(G) and Out(() act simplicially on C(G).

Proof. Let ®, = ({, {daf, {de}, {8:}) : ML, T, ) — @CUL, T, g)) be defined as follows:
¢ =Id:A—A ¢, = P . Aq — (A,:)n = (P{-An)ﬁ G = @ : Ay — (-A;}F — @(-Af}*
and o, = 1. Since (x,). © @ = @ o ., P 1s an i1somorphism, and the following diagram
commutes.

G —0 G
" [ T (1.8.1)
0 (A, a) - (R, a)

.

Since W is an isomorphism, 7 is also an isomorphism. It is easy to check that
QAL T, g)) satisfies (1.1)(a)-(f), so @(A(L, T, g)) is a graph of groups, which is (a).

Suppose that A(L, 7, g) and A" (L', T', ¢’) are equivalent. There exists a natural isomorphism
O = (P, {byt. {be}, {0} UL, T, g) — A(L', T, ¢"). Define the morphism

O = (¢ { D, b} A8} T (UL, T, g) — @AL', T, ¢"))

as follows:

1 d'=d:A— A,
(i) &, =@od,0o0 " 1 @A) — o(A),),
(iii) ¢, =@od o' @A) — @A),
(iv) O, = @(d,).
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Note that

(o) (@(5) = @gle) ™ @(s)p(gle)) = o(x.(s)) and @ o ad(d,) = ad(d)) o .

Thus.

]
O (0, )e

!, _

(.I_)“ © {{1;){“’ —= q) Q [I)ﬂ © (_Ij
=@od,o0X, 0
=(@o ad(d,) o ﬁ:::{m o P, 0@ -

U ! !
— u'd(a){ﬂ) O (ix;}fﬁ{f'} O {'I}'l.”
and @’ is an isomorphism. It is easy to see that
(D) 0P, = -:I;»:fI o (D), (1.8.2)

Note that

'."I-l f n-."lL

(1.8.3) Py od, = (P, 1s a natural 1somorphism),

(o

ot =P o(d,), (cf. 1.8.1),

I
I,.—-l-

A = o (@ f. 1.8, |
@ o o o(Py)y (el sl ),

By (1.8.2) and (1.8.3),

oA’ / 2’ — 1 — 1
P o d, = @op, o(P,) o (D) 0P, 0(Py),

- A’ — |
=@oY, od,0(P,),

= @O 1131 o (th;)“_' = llnfm
and ®’, is a natural isomorphism. So @(R(L,7,g)) and e(RA(L', T, ")) are equivalent,
whence (b) holds.

It suffices to show (c) tor an elementary collapse. Suppose that *5(Lg, T, gg) 15 an
clementary collapse of A(L,, T4, g4) by squeezing ¢;. Note that the following diagram
commutes.

i ud[hp,“ ey ) W
(B, 00 €y) - (%, Qo er) - (R ag) > G
-:I?'k;, L J{I}‘p J{I-jt.' J‘ﬂ:
j adthy, o, ) : ‘L_f.‘:]'ﬂ'
T (P(B'), 00 ¢1) - (@), 00 ¢1) T (@(RL), ap) — G

By (1.5.1) and (1.5.2), @(*B(Lg, Ty, gp)) 1s an elementary collapse of @(A(Ls, T4, g4)) by
squeezing ¢;. Thus, (¢) holds. i

1.9. Vertex stabilizers. By Theorem 1.3, an automorphism fixes a translation length function
if and only 1if, up to conjugacy, the automorphism 1s induced by an automorphism of the
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corresponding quotient graph of groups. A filtration of the stabilizer 1s given in Theorem
8.1 of [1], and successive quotients are described explicitly. To apply these results to the
Aut(G)-action on C(G), we need to show that the stabilizer of a translation length function 1s
the stabilizer of the graph of groups.

1.10. Lemma Let @ € Aut(G), and let (L, T, g) be a non-abelian graph of groups. Then
O(A(L, T, g)) and AL, T, g) are equivalent if and only if [ o ¢ = ¢l for some ¢ >0, where
[ = ly o (P!

Proof For ¢ € G, suppose that (™)~ !(g) = h(goe, ... e g)h ' € m(A, a), where e, ... ¢,
are the edges on an edge loop at a, dpe¢; = aj—y = 01¢i—1, & € A,, h € M a).
Furthermore, we can assume that gge; . ..e,g, 1s cyclically reduced. By Proposition 8.3 of
4],

() = lg o (W) (g) = la(h(goey . ..e,g)h ") = Z L(e;). (1.10.1)
=1

Suppose that @(R(L, T, g))andA(L, T, gyarecequivalent. Letd : A(cL, T, g) — ©(UML, T, g))
be the natural 1somorphism. Then the following diagram commutes.

0

(s ; G (s
o Lo T
T (U, ) - ), a) < (2L, a)
{(];II] ), fI"[,-

Since @' ¢ O, UL, T, g) — UL, T, g) is an isomorphism, it follows from Theorem 1.3
that [ o @ = cl.

Suppose that /o @ = ¢l. Ittollows from Theorem 1.3 and (1.5.1) that the following diagram
commutes.

L

G . G . G
L.':'l 1 ‘\ i i T['LIHTLI
[ 1 Ly | i i
T (L, a) - (2, a) > (e(R1), a)

P, t[.‘rq?

Then @ o O~ AeL, T, 2) — (AL, T,g)) is a natural isomorphism. By Corollary 1.4
AL, T, g) and (AL, T, g)) are equivalent. B

By Theorem 8.1 of [2], the vertex stabilizers of the Aut(()-action and the Out((G)-action
on C(G) can be described explicitly.

Bestvina and Feighn [3] proved that if G 1s a finitely presented group and 7" 1s a reduced
G-tree with small edge stabilizers, then there 1s a uniform upper bound for the number of
vertices and edges of the quotient graph 7/ G. A minimal simplicial G-tree is reduced 1f for
every vertex of valence two, the vertex group properly contains both edge groups incident to
it, provided the two edges are distinct. A group is small if it does not contain a free group of
rank two. A G-tree and a graph of groups are small 1f all the edge groups are small. A graph
of groups 1s reduced 1f the corresponding G-tree 1s reduced.
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1.11. Corollary If G is a finitely presented group, the subcomplex of reduced and small
graphs of groups is finite dimensional. The groups Aut(G) and Out(G) act simplicially on 1t.

Prootf. A collapse of a reduced and small graph of groups is also reduced and small. So the
equivalence classes of reduced and small graphs of groups form a subcomplex of C(G). If
the reduced and small graphs of groups have at most m edges, then the largest linear ordered
subset of reduced and small graphs of groups contains m elements. Therefore the subcomplex
1s (m — 1)-dimensional. If (L, T, g) is reduced and small, so 1s @(R(L, T, g)). Therefore
Aut(G) and Out(G) act on the subcomplex.

2. THE RELATION BETWEEN C(G) AND PL(G)

2.1. Let PL(G) be the projective space of translation length functions of non-abelian G-
actions on real trees. Let (Up, ..., %) be an n-simplex of C(G). Suppose that 21,(L;, T;, 2;)
is representative of 2;. Let >, A2l be a point in the n-simplex, where > A, = 1,
0 < A; < 1. Suppose that L; 1s normalized for all / such that the sum of the lengths of all
geometric edges 1s one. Since 2A;_; 1s a collapse of %;, E(A;_;) C E(A;) for all i. Thus,
E(Ag) C ... C E(A,). Then we extend L; to E(A,,) by

{ Li(e) 1ifee E(A)
Li(e) = .
() if e € E(A,) — E(A;).

Suppose that Ay = 0, A, = ... = A, = 0. Let

Lie) =Y NLfe), AUL,T,g =A(L,Ti, g), and

f(z ARL) =1, where [ = [y o (P.) ",

i={)

Let E(A,) be the set of geometric edges of A,,. Note that

Z L(f)— Z Z?\L(f)_.z;x Z L{f)—Zh

el (A, el (A, i=0 i=() e b (A =1}

2.2. Proposition / : C(G) — PL(G) 1s a continuous map.

Proof Let s = (Ay,...,2,) be an n-simplex of C(G). To show that f is continuous, it
suffices to show that the restriction of f on s is continuous. For [ € f(s) C PL(G), let
A(L, T, g) be a normalized graph of groups representing / =1, a;U;). Let U be an open
neighborhood of /. Suppose that U = U, ... U,, where U; = {?f c PL(G)||l(g)) — l'(g))| < €}
for some g; € G. Without loss of generality, we can assume that U = U;. Suppose
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that g, = 111 ‘hihpey ... e, )h 1), where hoe, .. .enh, © (2, a) is C}’L]iLdH}f reduced.
Suppose that >, u;-.vlf- €8, ) i glai —all<e /m and f(>°1 al;) = I'. Then

n " 1
— | Z f'rr'Lf'(f) - Z H;L;({")i < Z |-‘.'i’,-' — {ff:lL,'{{”) < E/!H.

=1 (=0 1=}

|L(€) LI(E’)

~f o e . : :
By (1.10.1), [l(g;) — I'(g,)| < €. Thus,l € U and f| is continuous, so f is continuous. B

Let [ be a translation length function of a minimal G-tree. Let (L, 7', ¢) be the normalized
graph of groups of the G-tree. If G is finitely generated, then the quotient graph A is
finite. Suppose E(A) = {ey,@,...,e,,¢,}. Let s be an n-simplex in R"™' with vetices
(1,...,0),...,(0,..., 1), and let s(*{) be the barycentric subdivision of s. There are (n + 1)!
n-dimensional subsimplexes. For example, if n = 2. the vertices of s(2) are (1,0, 0), (0, 1,0),
0,0, ), (1 /2,1/2,0),(1/2,0,1/2),(0,1/2,1/2),and(1l/3,1/3,1/3). We now define
f1 :5(2) — C(G)onthe vertices of s(2). Foravertexa = (aq, ...,a,)of s(), let L,(¢;) = a;,
0 < i < n,and let

f (a) { Q.l([.:u-.T, };’} ifU{l:ﬂ{'{: | forall i,
a) =
| W (Ly, T, & if a@; = 0 for some 1,

where 2’ is obtained from 2l by collapsing {¢; € E(A)|a; = 0}. For example, fi(1,0,...,0)
1s obtained from 2 by collapsing all edges except ¢y and ¢y. Next we define fi(v) for an
arbitrary point v € s(2l) as follows

)= Nfity)

i=0
H ' .

where v =) " Ajv;, and (vy,...,v,) C sis an n-simplex.

2.3. Lemma /) : s(2) — C(G) is an embedding.

Proof. Leta = (ay,...,a,) be a vertex of s(2). First we show that f,(a) is a graph of groups
of a G-action on a Z-tree. Itis the same as showing that a; = O or 1 / p, where p is the number
of nonzero components of a. Note that a may not be a vertex of 5. Suppose that a is on a
(p — 1)-simplex of s and not on a (p — 2)-simplex of 5. Since a 1s a vertex of the barycentric
subdivision of s, a 1s the average of the p vertices of the (p — 1)-simplex. Thus, ¢; = 0 or
I / p, which shows that f;(a) 1s a vertex of C(G). Therefore £, 1s well defined.

Next we show that f| is an embedding. Let L'(¢;) = 1 /(n + 1) for all i. Replace the edge
length function L of A(L, T, g) by L. Then A(L", T, g) is a vertex of C(G). Note that

HiGERD) = {®Ry, ..., A) C CGA, =L T, g)}.

In fact f; is a bijection between the vertices of s(2) and the vertices of {(p,...,2A,) C
C(G)RU, =AML T, g)}. Wedefine apartial order in the set of vetices of s(1). If y; = Oimplies
x; = 0 forall i, then let (xg,...,x;) < (v, ..., V). Forexample, (0,0,1)<(1/2,0,1/2)<
(1/3,1/3,1/3). By induction on n, 1t 1s easy to see that the set of vertices of an n-simplex
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of s(%) 1s a linear ordered set of n + 1 vertices. It follows from the definition of f; that fi(x)
1s a collapse of fi(y) if and only if x <y for x,y € V(s(2l)). Therefore f; 1s an embedding. §

2.4. Theorem Suppose G 1s a finitely generated group, and f is defined as in (2.1). Then
f: C(G) — PL(G) 1s a bijective continuous map.

Proof First we show that f is surjective. Let [ be a simplicial projective translation length
function. Suppose that/ = lqo(Pp>)~!, where A(L, T, g) is the graph of groups of the simplicial
G-tree. Note that O < L(e;) <1 and v = (L(eg), ..., L(e,)) 1s a point in s(2A). Thus, v belongs
to an n-dimensional subsimplex s* C s(2). Let vg,...,v, be the vertices of s’. Suppose
that v = Y7 av;, and fi(v;) = A(L;, Ti, &) € C(G). Note that v; = (Li(ep), . .., Li(e,)) for
i =0,...,n. Then

(L(eg), ..., L(ey)) =1 Zm Vi = (Z aiLi(ep), . ZH;L;{E”))-

=) =i i==()

Thus,
fl H
> ailiey= L), fQ_aA)=1
F=1) i=()
and f 1s surjective.

To show that f 1s 1njective, suppose that

m

o 0 (I~ = ;‘(Za ALi, T, 8) = fO dA (L], T],g1)) = lar o (Y)-

i={) 1 =(]

Without loss of generality, we can assume that a, # 0 and @), # 0. Thus,

i

A = Ql”(z ailiy Ty, ) and A" = 247 (Y~ alL}, Ty, 8),)-
i=0 i=()

Since they are non-abelian and have the same translation length functions, up to a scalar
factor, by Corollary 1.4, they are equivalent. We can assume the scalar factor 1s 1. Let

$ ;A — A be the natural isomorphism. In particular, > 7, a;Li(e) = Z;” o GiLi(d(e)).

Since ¢ : A — A’ is an isometry, we can assume that A = A’. Note that Lj(e) = Lj(d}(e)).
Then

1 m

L(e) =) aiLi(e)=") daLje)=L'(e). (2.4.1)

i=0 j=0

Let E.(A) = {eq,...,e;}. Note that both S a;2(L;, T;, g;) and S0, a4, (L/, T/, g})
belong to f;(s(21)). Let

= (Li(eo), ..., Li(e))), v; = (Li(eo), ..., Li(e)).
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Since ;s are vertices of f;(s(2()) and 2, is a collapse of Ui, (vo, ..., V,) is an n-simplex s
of s. Similarly, (v;,...,v]) is also an n-simplex s, of s. Note that
fl n n m
— —/
A aw) = afAiLy, T g and i)~ apv)) =Y a®(L], T/, g)).
i=0 =0 i=0 i=0
By (2.4.1),

H H

> aw; = (L(e), ..., L(e)) = (L'(eq), ..., L'(e) = Y _alv].

i=0 i—0

By Lemma 2.3,

H mn

Zﬂfﬁf(lﬁh Tr'a;'f') — ZH Ql (Lr* I‘-'g )

=0 r=()

Thus, f 1s injective.

3. THE COMPLEX OF SMALL F,-TREES

In this section, we study CS(F),), which 1s the subcomplex of small simplicial F,-trees. A
graph of groups 1s free 1t all vertex groups are trivial. We shall prove

3.1. Theorem. For any A, A ¢ CS(F,) (n>1), there exist 2g,..., 2, € CS(F,) such

that 2, = A, A, = Ql and either %l; 15 a collapse of 2;_; or 2;_; 1s a collapse of %; for
I <i < m. Namely, CS(F},) is path connected.

3.2. Lemma. Let 2. Ql. c CS(F,) (n 1). Suppose that 2 and A’ are free. Then there is an
edge path in CS(F),) joining A and A .

Proof. After collapsing the maximum subtrees of A and A’, we can assume that A and A’
are n-leaf roses. Each leaf corresponds to a generator of F,,. Let EL(A) = {ey,...,e,} and
E((A) = {e},... e,}. Let g = p2(ey), g = W (¢)). and (g;) = g/ for | < i < n. Then
x € Aut(F,). Without loss of generality, we can assume that « 1s an elementary Nielsen
transformation. Suppose g| = «lg)) = 81_] and ¢! = «(g;) = g; for 2 < i < n. Let
P = (P, {du}, {Pe}, {0.}) : A — A be defined as follows:

ey ifi=1 L B
dle;) = o G, = b, =1d, b, = l fore € E(A).
e’ ifi>1,

Then
¢ f ' .r—l !
\PH(E’ ) =8 = & —’Ll)zl (e jzlpgl o ®yler),

so ® is a natural isomorphism. By Corollary 1.4, 2A = 2 .
Now suppose g| = a(gy) = g1£2 and g} = a(g;) = g; for 2 < i < n. Let B be obtained
from 20 by collapsing the loop e,. Let ‘B’ be obtained from 2’ by collapsing the loop 5.
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Since n > 1, B and B’ are non-trivial. Let ® = (¢, {,}, {d.}, {8.}) : B — B’ be defined
as follows:

| ife # e

£ ifE’:E].

dﬁﬂzﬁﬁﬁ%l¢m=mﬂm:HL%:{
Then
PP o d(e) = PP (5,655 ) = WP (elgs ) = glgs | = g1 = 02(e)),

so P 1s a natural 1aﬂmﬂrph15m and B = B’. Since B is a collapse of A and B’ is a collapse
of A, (% 20) and (‘B A ) are edges of CS(F},). So there is an edge path in CS(F),) joining 2
and A . N

Let 2 € CS(F,). We will find a path in CS(F,) from U to B, where B is free. Then
Theorem 3.1 follows from Lemma 3.2. Since we only consider small F,-actions, the edge
stabilizers are either trivial or they are infinitely cyclic.

Case 1 A, = {1} for some e € E(A).

If A — {e,e} is not connected, we then collapse two components of A — {e,e} to two
vertices of e, and obtain a new graph of groups, which is a free product, because the edge
group is trivial. If A — {e, e} is connected, we collapse A — {e, e} to a vertex, and obtain an
HNN-extension.

Case 1.1 Free product.

In this case, F,, = F), x F,, and p 4+ g = n. We then blow up two vertices to roses of p-leaf
and g-leaf, respectively. The resulting graph of groups ‘B is free. This gives us a path in
CS(F,) from 2 to B.

Case 1.2. HNN-extension.

In this case, since the edge group is trivial, F,, = (F,,—1,¢e) = F,_1 * {¢). We then blow up
the vertex to arose of (n — 1)-leaf. The resulting graph of groups 1s free. This concludes the
proof of Case 1.

Case 2. A, = Zforalle € E(A).

We choose an edge e € E(A), and collapse A — {e, e} to a vertex if A — {e, ¢} is connected.
Otherwise we will collapse two components of A — {e, e} to two vertices of e. The resulting
graph of groups 1s an HNN-extension in the formal case, and an amalgamated free product in
the latter case.

Case 2.1. Amalgamated free product.
In this case, F,, = Gy *z G|, where Z. = (1). Let y; be the image of ¢ in G;. Note that G, is
a free group. We need the following theorem of Morgan.

3.3. Theorem [8] Let Gy and G be finitely presented groups and let G = G %z G, be a free
product with amalgamation. Let y; denote the image in G; of a generator of the amal gamating
subgroup. Suppose that G acts freely on an R-tree. Then one of the following occurs:

(1) vp 1s a generator of a free factor in G;:

(2) yi1s a generator of a free factor in G;; or

(3) for i = 0,1 there are free product decompositions G; = H; = F; where F; is a free
group containing y; and y; 1s a quadratic word with respect to some free basis for F;.
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Note that F), acts freely on an R-tree, so the theorem applies. In case (1) of Theorem 3.3,
since 2l is non-trivial, the amalgamated free product is non-trivial. Thus, {y,) is a proper free
factor of Gy. Note that Gy 1s a free group. We blow up the vertex of Gy to an edge, and the
new splitting 1s

F'x (vo) *z G1.

Now we collapse (yg) *z G| to a vertex group, the result is a free product, which is covered
by Case 1.1. Case (2) of Theorem 3.3 can be handled similarly. In case (3) of Theorem 3.3, 1f
H, 1s non-trivial, then we can reduce it to the previous case. If H;’s are trivial, let {go, . .. ,g,;}
be a basis for Gy, and {4y, . . ., hq} be a basis for . Suppose that g¢ appears only once 1n 7y,
then let {yo,g1,-..,&,} be anew basis for G, which is in case (1) of Theorem 3.3. Suppose
that each g; appears exactly twice in vy, and each h; appears exactly twice in y;. Then F,
will be a surface group, a contradiction. This settles Case 2.1.

Case 2.2. HNN-extension.
We need the following theorem of Morgan and Skora:

3.4. Theorem (Theorem 5.2 of [9]) Let the finitely presented group G act freely on an R-tree.
If G has an HNN-decomposition G = Hx g, where iy(s) = sy, {1(s) = sy, then either

(1) H splits as a free product H = H' xZ, where one of sy, s, is a generator of the Z-factor,
and the other conjugated by some / & H has image in H'; or

(2) H splits as free product H = H' x F, where F is a free group and where the elements s
and hs h™', for some h € H, have image in F. Furthermore, so, hs;h~! form a purely
quadratic system with respect to some basis of F.

Suppose F,, = (H, t|tsor~" = ;). Consider case (1) of Theorem 3.4, suppose that hs i~ €
H and sqg € Z. Let AU(L, T, ¢) be defined as follows:

A 1s a loop with a vertex a,
A, = H, A, = (s0), %.(s0) = S0, xz(s) = 51,
Le)y=1, gle) =1, gle) = 1.
Let (L', T', g") be defined as follows:
A=A A=A, A = A, & =, o = ad(h) o &z,
L'tey=1, g'(e) =1, ¢g'(e) = ht.

Let ®:A(L, T,g) — A(L', T, ¢") be defined as follows:
® = (Idg, {Ppy = 1d}, {Pp, = 1d}, {6, = 1,8; = h™')).
We are going to prove that @ : 2 — 2" is a natural isomorphism. Since

ad(d7) o o o gz = ad(h™ ") o ad(h) o az o Pz = az o Pz = Py, © 7,

o
il

® 1s an 1somorphism. It 1s easy to see that Lbff" (x) =1 od,(x)forx € H. Note that

O(e) = d.Pp(e)d; ' = eh,

A !

P2 (e) = gar(e)gar(e) ™' = gale)ga@)h ™"
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Thus,

a7 . '-’.'_Jl

IQ1 D‘CI?”({): !

£l

(eh) =1 (e)h
= ga(e)ga@h™'h =V, (e),

so P2 = P o d,, and D, is natural. By Corollary 1.4, 2 and 2 are equivalent, so we can
take 2" as the reperesentative of the equivalence class. Let s = hs;h~' € H'. If case (1) of
Theorem 3.4 holds, then G = (H’, 50, elesge ™! = s7). We then blow up the vertex to an edge
¢’ with trivial edge group. The result is the splitting H = H' = (s59). We now collapse the edge
e. The new splitting is (H’, ¢"). which is in Case 1.2

[f case (2) of Theorem 3.4 holds, then we blow up 1he vertex to an edge ¢’. The resulting
splitting is G = H' x F(y. If H' is non-trivial, we collapse e to a vertex, the new splitting is
G = H' = F', which is in Case 1.1. If H’ is trivial, since sq, is;h~" form a purely quadratic
system with respect to some basis of F, G = F, must be a surface group, a contradiction.
This concludes the proot of Theorem 3.1. §

Lustig [7] proved that every automorphism of F, fixes a point of the compactified outer
space. The following result follows from Theorem 2.12 of [6] and Theorem 3.1.

3.5. Corollary Let A be the base point of SC(F,,) . For @ € Aut(F),), suppose that ¢ fixes a
point A e SC(F,), 1.e.,

ﬂl

lr o (D) N (@(g)) = lar o W) (g)

for all ¢ € F,. Then there exist A; € SC(F,) (0 < i < m), such that A = U, A" = 2A,,, and
either %I, _; is a collapse of 2, or vice versa. Furthermore, the following diagram commutes

¢
G .. G S G .. G
I*he?l T | T L‘l'?r! T t_.-"‘r?-! T T L-'fl
mA,a) —— ... — m(~A,ad) > (A a) e o (A, )
f] I||'” {]],;.- ! _.IIr;;H _;II]

where f; : TR, a;—-1) — ™%, a;) 1s the 1somorphism induced by the collapse or the
blow up, and ®,/ is induced by an automorphism of 2l". In particular,

*i']l

‘ip:llj O JHD---C’fI)_lG(I}u”j(f;n‘:’-- f)':’(lpgi)_]- i
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