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FULLNESS AND SCALAR CURVATURE OF THE TOTALLY REAL SUBMANIFOLDS
IN S°(1)!

LI XINGXIAO?

Abstract. Let M be a totally real 3-dimensional submanifold of the nearly Kihler 6-sphere
SC(1). Theorems are proven on the relation between the fullness and the scalar curvature R
of M. In particular, if either R is a constant different from 2, or M is compact with R # 2,
then M is full in S°(1) unless M is totally geodesic. A family of examples with R = 2, which
are fully contained in some great hypersphere S°(1) C S°(1), are also defined in an explicit
manner.
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I. INTRODUCTION

Denote by 8"(¢) the standard n-sphere with constant sectional curvature ¢. It is known that
there is a canonical nearly Kihler structure on S°(1). So the study on complex or totally real
submanifolds in $°(1) is much attracting, and much progress have been made in this direction.
For example, see the references at the end.

On the other hand, one expects that the codimension of a fully immersed minimal subma-
nifold in S be closely related to its curvature. Thus it was once conjectured that S*(¢) can
not be minimally immersed into S°(1) when ¢ # 1[7]; while a theorem of Moore [13], which
seems to support this conjecture, says that $°(¢) can not be minimally immersed into S°(1)
unless ¢ = 1. But N. Ejiri proved in 1981 that $7(c) can be immersed into S°(1) as a totally
real submanifold if and only 1if ¢ = 1 or # Since in this case total reality implies mimimality
[8], the conjecture in [7] thus has a counterexample. It is clear that Ejiri’s example 1s full in
S°(1), which is explicily expressed by F. Dillen etc. [6]

[n this paper we study the relation between the fullness and the scalar curvature of a 3-
dimensional totally real submanifold in S°(1). After some necessary preliminaries in Section
2, we give explicitly in Section 3 a family of totally real immersions of S* into S°(1), which
are of constant scalar curvature R = 2 and fully contained in some S2°(1) < S°(1). Also
they induce totally real imbeddings of the real projective 3-space RP. We will show that
they are all G,-congruent to each other. Therefore, up to G>-congruence, we can view these
immersions as one example and denote it by x”. In Sections 4 and 5. we are to prove the
following results, which reveal in an extent the relationship desired.

artially supported by Math. Institute of Peking University.
“Supported by NNSF of China and NSF of Henan.

II:-



106 Li Xingxiao

Theorem A. Let M be a C*-manifold of dimension 3 and \: M — S°(1) be a totally real
immersion with constant scalar curvature R. If R # 2, then 1\ is full in S°(1) unless it is totally
geodesic, 1.e. R = 6. Furthermore, in case R = 2, 1s locally G>-congruent to our example
X unless it is full in S°(1).

Theorem B. Let M be a compact C>-manifold of dimension 3, and {: M — S°(1) be a
totally real immersion with scalar curvature R # 2. Then 1 is full in S°(1) except it is totally
geodesic, that is, R = 6

In the course of proof we also obtain the following corollaries:

Corollary C. Let M be a compact and connected C™-manifold of dimension 3, and :
M — S°(1) be a totally real immersion with scalar curvature R. If either R < 2 or R > 2,
Then 1 is full in S°(1) except

[7 1t 1s totally geodesic, 1.e., R = 6; or,

2° it is covered by the immersion x" upto G,-congruence.

Corollary D. Let M be a C*>-manifold of dimension 3 and {: M — S°(1) be a totally real
immersion. If 1 1s full in some totally geodesic $"'(1) C So(1). thenm = 3, 5, 6.

Acknowledgement. This work was completed during the author’s visit at Math. Institute
of Beijing University. He would like to give his heartful thanks to Professor Chen Wethuan for
useful conversations. He also thanks Ms L1 Ru and other faculty members of the institute for

kind help. Finally He 1s grateful to Professors Bolton J.. Dillen F., Shen Y.B. and Woodward
L.M. for sending him lots of their valuable papers.

2. PRELIMINARIES

[n this section, we briefly review some basic facts on the nearly Kihler structure on S°(1)
and the total reality condition. One may see, for example, [1, 6, 11] to get further information,

For convenience, we agree to the following ranges of indices and conventions:
| <A B, C,...<6, 1 <),k ...<3, 1 =1i+3.

The multiplication on the Cayley numbers defines one cross-product on the set R’ of purely
imaginary Cayley numbers by

(Xy — yvx). (2. 1)

|
X Xy = —
X X 3 5

The standard inner product on R’ can be reformulated as

l
(x,y) = —E(X}‘ + v x).

If {&,,02,...,07} 1s the standard basis for R’. then we can write down the cross-product
table as:
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Cross-product Table of R’

66 (57’ 54 —65 —52 53 D —(51
57 _56 (5‘5 (54 —'{53 “(52 (51 0

It can be shown that [11], the operation “x" in (2.1) satisfies the following identity:

XX (y X2+ Xy xXz=2x 2)v—(x,v)z—(, 2)x. (2.2)

Since S°(1) is a hypersphere in R’ of radius 1, we can use the cross-product “x" to introduce
on S°(1) a (1, I)-tensor field J as

JX)=xxX, xS, XeT.S5%, (2.3)

where T,.5°(1) denotes the tangent space of S°(1) at x. It is readily by (2.3) that J satisfies
J> = —id, and defines an almost complex structure on S°(1), which is also nearly Kihlerian
in the sense that VyY = 0, where X, Y are vector fields on S°(1) and V is the Levi-Civita
connection of the standard metric of S°(1).

Define a subgroup G» of the orthogonal group O(7) by

Gy = {g € O(7),g(x x y) = g(x) x g(y), forallx, ye R"}. (2.4)
Then G, is nothing but the group of isometries on S°(1) preserving the nearly Kiihler structure

J[2,3].
Let G be the (2, 1)-tensor field on S°(1) defined by

GX,Y) = (VyD(Y), X Y& TS,

where 75°(1) denotes the tangent bundle of S°(1). Then we have
Lemma 2.1. [4,6.10| For X, Y, Z € T.5%(1),

GX,Y)+ GV, X)=0, GX,JY)+JGX,Y)=0,

(GX,Y),Z) + (G(X,2),Y) =0, GX,Y)=XxY+(X,JVx

Now let M be a C>*-manifold of dimension 3, and {: M — S°(1) be an immersion.
With the induced metric by \p, M becomes a Riemannian manifold. Let 7TM and NM denote
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respectively the tangent and normal bundles of . 1 1s called totally real it JTM C NM;
is said full in S®(1) if Y(M) is not contained in some great hypersphere S°(1) ¢ S°(1). One
important fact 1s the following

Lemma 2.2 [8] If {: M — S°(1) is totally real, then it is also minimal.

Let V and D be the Levi-Civita connection and normal connection on M respectively.
Denote by /1 the vector-valued second fundamental form, and V/ 1ts covariant differentiation.
The Weingarten map A¢ for a normal vector & 1s related to /4 by

(AcX,Y) = (h(X,Y), &), X, Y eTS)

Using the total reality and Lemma 2.1, one can prove the following lemma:
L.emma 2.3. [4.6]

Dx(JY) = G(X,Y) + JVyY, ApY = —Jh(X,Y), (2.5)

(VX Y, Z),JW) — (Vh)(X,Y, W),]Z) 2. 6)
— (WY, Z),GX, W)) — (h(Y, W), G(X, Z)), |
(X, Y),3Z) = (h(X,Z),JY). (2.7)

3. EXPLICIT EXAMPLES

Let S7(1) = {(xo,x1,x2,%3) € R*, x7 + x7 + x5 +x3 = |}. Define along $7(1) three
vectors Xy, X», X3 by

X = (—Xx),x0,X3, —X2), X2 = (—x2, —X3,X0,X1), X3 = (—X3,X2, —X|,Ap).

Then X, X>, X3 are linearly independent everywhere on $*(1). Put

1 ]
E] — —/EX“ Ej' — EX:,

v
Introduce on S7(1) a new metric g by regarding {E1, £5, E5} as one orthonomal frame field.
Denote by S+ the Riemannian manifold (S°(1), ¢). It 1s easily seen that

|
Ex = —X;.
X

(B, Bl = 285, B2 E3l = £y, [E3,E ] = Es.

Thus by the definition of the Levi-Civita connection of a metric [ 12], we have
Proposition 3.1. The Levi-Civita connection V on S* is characterized by

TIJEJ — [}n \—.IF|E3 — _T’IEE] — E13
Vi by = —Ey, Vi Ey=E, ViE =V E =0,

Further calculations prove
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Proposition 3.2. The components of the curvature tensor of S? with respect to {E;, E,, E3}
are given by

1O — Oidu, 1t ] s to 3
Ry = { Oidj — 0idp, 1fany of i,j, &, [ equals to (3.1)

(S,‘;é{fk — 65;(6_;;, otherwise.

In particular, the sectional curvature K, the Ricci curvature Ric and the scalar curvature R
satisfy the followings:

-1 <K<, 0<Ric<2, R=2.
For each real number 0, we define a C>-map x? of $° into R’ by

e . 2 2 2 2
X (Xp, X1, X2, X3) = —{Z(JCMQ — XpX3)01 + (an + X5 — X] — -1'3)62

V2
| 2(xpXx] + X2X3) COS 0 — 2(X1Xx3 — XpXx2) SIn 9]63 + (Iﬁ + X% — X% — X%)éﬁ

+ 2(xpx3 + x102)06 + [2(xpx) + x2x3)SIN O + 2(x1x3 — XpX2) COS E}]((J';}

[t is easily verified that ||x”(xq, x), x2,x3)||* = 1, since xj + x5 + x5 +x3 = 1. Therefore x’ is
a map of S* into S°(1). Direct calculations show that

XE, = 2xpx2 + x1x3)8) + 2(x2x3 — xox1)07 + (J:ﬁ + x% — x% — .x%)cns 00,
2,2 2 2y | (3-3)
+(x5 + x3 — x7 — x5) sin 007,
XEE: = — 2(xpx> + x1x3)05 — 2(x2x3 — XpX) )¢ + (JE% + I_?i — ,JE% — .?L%) sin 04, 3. 4)
~ (X5 + X3 — x7 — x3) cos 057, |
I
2, 2 2 2 2y %
x. FEy = m{—(}fﬂ + X7 — x5 — x3)01 — 2xpxz + x1x2)0
V2 B
— [2(x1x3 — Xxpx2) cos O + 2(xpx| + x2x3) s1n 0)d4 (3.5)

+ 2(x1x2 — XpX3)05 -+ (ITS + }.'% — )C% — }:%)5{}
+ [—2(x1x3 — xpx2) sin 0 + 2(xgx; + x2x3) cos 8]67.

[t follows that(x7E;, x"E;) = &;, which implies that x is an isometric immersion. From the
definition of J, we can find directly that

JXE) = ﬁ cos O[(xg + x7 — x5 — x3)8 + (x5 + x5 — x5 — x3)8>
+2(x 10 — Xx3)05 + (x5 + x5 — x7 — x3)86)
_I_v% SIN 8[2(_,{112 — Xﬂ.—’i_’;)é; -+ (Iﬁ -+ .I;' - X% — I%)Eig (3 6)

—(Jfﬁ -+ ﬁ — x% — 12)55 — 2(xpx3 + x1x2)0¢]
+v%[2(3‘1«’f3 — XpXx2)03 + 2(xpx1 + X2X3)d7],

JOSE) = —ssin Ol +xf — x5 —x3)8) + (0F + x5 — X7 — x3)8»
+2(x12 — X0x3)85 + (3 + 43 — xF — x2)8]
— ﬁ COS 9[2(3{71.}‘[3 — X{]X})6| -+ (Iﬁ -+ I% — X% _ I%)‘SE (3 7)

—(x3 + x7 — x5 — x3)05 — 2(xox3 + x1x2)86]
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JOYE) = —84 (3. 8)

which are all orthogonal to XYE,, x"E, and x’ E5. Thus we have
Proposition 3.3. The map x? defined by (3.2) is a totally real and isometric immersion of
S% into §°(1), which is contained in the great hypersphere $°(1) orthogonal to d4
Proposition 3.4. For each 0, there 1s a frame field {EI,ELE} on S$° such that the
followings hold 1dentically:

ViEi =0, VpkE,=-ViE =FE ViE;=-E, (3.9)

VEEEH = E],, vg_1E| = V&Eg = 0, (3.10)

WE| E\) = —h(Ey, Ey) = J&UE)), WE), E)) = hEy, E)) = —J(XIE), (3.11)
WE: Ey) = h(E;,E) = 0, (3.12)

JGOIE, X0Ey) = XVEy, JGUIE>, xUEs) = xUE),
JGWUE, XVE)) = XIE>.
Proof. From (3.3), (3.4) and (3.5) we find easily

(3.13)

dXPENE) = —2V2(xx — xox3)0; — V205 + X3 — x7 — x3)ds

—2v 2(xpx| + x2x3) €c0s 803 — 2/ 2(xpx) + X2x3) Sin 007
—24/2(xgx1 + Xax3) sin 083 + 2v/2(x1x2 — Xox3)0s
+\/§(ﬁ:ﬁ + x% — .r% — x%)é._g + 2/ 2(xpx1 + x2x3) cos 007,
dXPENIE;) = dOYE)GYEs) =0, dUE)GUEY) = —x"(xg, x1, 22, X3).

d(xYE))(XE))

Take the NM-components of the above, and compare them with (3.6) and (3.7) one sees

h(E | E;) = —J(xf&)sin 0 -+ J{XEEE}C{}H 0,
WE, E)) = J&E;) cos® + J(XE>)sin©, (3. 14)
WEy, E3) = h(Ey, E3) = h(Es, E3) = 0.

For some real number « we introduce a new frame field {£;, £, E5} by
Ey,=Ficosox— E>rsinx, E, =FE/sinx+ E~>cosx, Fxy=FE5.

Then 1t 1s not hard to verify (3.9) and (3.10). From (3.14) we have also that

WE |, Ey) = h(E,,E))sin20+ h(E;, E>)cos 2«
= J&YE)) cos(Rax + 0) + J(XYE») sin(2Qxx + 9),
WE E\) = hE, E)cos2x — h(E;, E>)sin2x
= —JWIYE))sinQRo + 0) + J(?E>) sin(2ec + 0),
JE) = J&YE))cosa — J(xUE,)sin
JOCE) = JOUE))sinx + JWUE,) cos «.

By choosing o = —(% -+ %), we obtain (3.11) and (3.12).
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To prove (3.13), we note that for each i,

(D Ix"Ey  JXUE) = Ei(JXEy JXVE) — E(JXVE>, D, JXUE;)
—(JxXYE>, Dg, JXUE;),

which implies Dg, Jx?E> = 0. Thus by (2.5),
JGOE| XU Ey) = IDg, (JXUE>) — JxU(Vg Ey) = xUEs.

Similarly we have other two identitim in (3.13).

Corollary 3.5. All the immersions x! are G,-congruent to each other.

Proof. Let 8 and 0’ be any two real numbers. Then the Corollary 3.5 follows by applying
to x” and x”" similar arguments of Dillen etc. in [6]. See the proof of the main theorem and
the remark thereafter; Also see Section 4 below for an outline of this.

Remark 3.6 let RP? be the real projective 3-space with the metric induced from S°. Then
it is easily seen that each x” induces a totally real embedding of RP? into S°(1).

4. PROOF OF THEOREM A

To prove Theorem A, we are able to assume that \Pp(M) is contained in some great hy-
persphere S°(1) C S°(1), which is equivalent to that there is a unit vector v orthogonal
identically to 1 and each of 1ts osculating spaces. Clearly we need to prove that, if R 18
constant, then either R = 6 and 1 1s totally geodesic, or R = 2 and 1 1s locally G»>-congruent
to the immersion x” in Section 3.

Let ¢5 be the unit vector field on M such that y,e3 = Jv, and e, e> be two local unit vector
fields on M such that e|, ¢>, ¢3 form a local orthonormal frame field on M. By the total reality
of U, {W.e;, JU.e} 1s a ]{}Ld] orthonormal frame field of S°(1) along . For simplicity,
we shall drop from now on the tangent map "." in "p.e;" 1f causing no confusions. Put
e~ = Je; and write

1 o i
Gley, ep) E Gf”;q, ie;, e;) = E h” er, Vhile,ejer)= E h;;;;ﬁ-"f“-
/

From Lemmas 2.1 and 2.3, we have
LLemmma 4.1.

Wy = hly n;; = I = i, (4.2)
!.-?”A - "’?f;f n C]m hm o Gm }.-?m (4. 3)

LLemma 4.2. There are suitable ¢ and ¢> such that the corresponding frame {¢;, ¢;«} has
the following properties:

s o8 ,}_-.: -}"h |
hi, = —hy, = —hi, = —h3;, =a >0, other z’?‘;‘f- = 0,

. . : (4.4
JGler,er) = e3, JGler,ex) = 1, JGles,e1) = en. )
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Proof. By (4.2) and the choice of ¢y we see that, if any of i, /, k equals to 3, then hf‘r = ().

An application of this with (4.2) and Lemma 2.2 gives

I o

Bl = —hd, = —h%, = —h3,, W, = —h3, =hl, =kl (4.5)
If ; and e» are changed to ¢, and é; by
€] = €1 COSX — 28N X, €2 = €SN+ > CoS K, (4.06)
in which o 1s a real number. Then
hH = (h(éy,e)), Je,) = h ”Lm"ﬂ ,-'.*“ sin 3,
f’zH = (h(é,e)),Jé;) = hH sin 3o + A7, cos 3.

In case that h:ff # (0, one sees easily that there must be some value of «, such that ;ﬁl = ()
anda = h!, > 0.

To proceed, we remark that (4.4) holds 1t and only 1f any one of the last three equalities in
it holds. For example, we have

JG(e1,e2) = 3 & Gleg, ) = —e3« & Gw = — 55,

which with (4.1) implies Gu = —8K and G%, = —84. Therefore (4.4) holds. Note also
that JG(ey, e») = e5 1s invariant under the transformation (4.6) of ¢, e»> into ¢, ¢>, we need
only to show that there exists one pair of ¢, e» satisfying JG(e;, e») = e3. To this end, fix
arbitrarily one e, orthogonal to e3 and put ¢; = JG(es, e3). Then from the above argument
we know that JG(e, e2) = e3, and so the lemma 1s proved.

In what follows, we shall fix the frame field {e;, ¢;+ } such that (4.3) and (4.4) hold.

Lemma 4.3. Let w; be dual to ¢;. Then, with respect to the frame field {e;, ¢;«}, the
connection components w45 of S°(1) restricting to 1 satisfy the following relations:

Wi=px = Wi2 — W3, Wr=3x = Woxzx = 0, W3 = —Ws, W3 = Wy, (4.7)

Wi = AW, Wirx = —dWr, Wi+ = —aAW;, WI3 = Wy = 0.

Proof. By (2.5) and (4.4),
Gf} e~ = Glej,ej) = Do Jej — IV, e = Wi« (e)ep — wji(e;)eg«.

Therefore
Wjr= = G W; + Wi (4.8)

On the other hand, by the choice of e3, w;+3+ = w»+3+ = 0. This together with (4.4) and
(4.8) gives (4.7). Other parts of the lemma 1s direct.

From the equation of Gauss and (4.3), we can write out the components of the curvature
tensor of P as follows:

Didj1 — 0101 1f s ti, 7, k, 1 als to 3
R;';'M — { kYl i)k I some of 1, J, K, { equals to (4.9)

(1 — 2a7)(6dy — dydy), otherwise.
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LLemma 4.4. The components of V1 satisty the following equations:
2% R e 3 LRSS R R

.-:r:d_r 1:*: e L2
da = h),w; + hj,ws = —hj,w; — hjnw;.

Proof. By the definition of Vi, we have

[ oot a = k™ |

Then Lemma 4.4 follows from Lemmas 4. |, 4.2 and 4. 3 by direct calculations.

Now we are 1n a position to complete the proof of Theorem A.

By the equation of Gauss, R = 6 — 4a. Thus the condition that R =const is equivalent to
a =const. By (4.11), we have etther ¢ = 0 or w», = 0.

It a = 0, then R = 6 and 1 1s totally geodesic;

[t @ # 0, then w» = 0. Take exterior differentiation of this identity, we get by Lemma 4.3
and (4.9),

0=dw» = Wiz A W3 — ;RQHLU; A Wi = 2(2(!2 — l)LU| ANy (4 12)
Thus we obtain that @ = 1, namely R = 2. In this case, the connection forms of S°(1)

restricting to 1 are completely determined by Lemma 4.3 as follows:

Wy = —W3, W3 = Wa3= =0, w3 =—w2, W3 =Wy,

Wi = Wy, W= = —W>2, W= = —Wy}, Wiy = W= = 0.
From these equalitics one gets easily that

Ve =0, vmﬁ’z = —?fgf’[ = €3, Vflf’} — —€2,
Veey =e, Ve = Ve =10

h(ey,e) = —hler,er) = e+, hle),er) = —er«, hle;,ez) =0,

all having the same constant coefficients as in Proposition 3.4. Using Lemma 5.6 in [6], M 1s
homogeneous and locally isometric to S°. Let {£;} be a frame on 7 satisfying Proposition
3.4 for the fixed immersion x”. Then there is a local isometry ¢ of an open U C M into
S°, such that @.e; = E;. Let ¢ be the map between the normal bundles of U and @(U) in
S°(1) defined by ¢e;+ = Ej«. Then ¢ preserves the bundle metric, the second fundamental
form and the normal connection. By the rigidity theorem of submanifolds, U and ¢@(U) are
congruent, that is, there is a motion ¢ € SO(7) such that 6 o x o @ = on U.

On the other hand, By Lemma 2.1 and the total reality, we know that G(e;, ¢;) = ¢; X ¢;,
G(E;, E;) = E; x E;. Here we have omitted the tangent maps x? and .. An application of
this fact with (3.13) and (4.4) gives that

e =P X e =ey3Xey e =1V Xer=e¢ Xes, ey =1 Xey=e Xe,
El* :,JL‘“}(EL :E_g}‘(Eg, E]*:J{”:’{EEZE| XE_;,
Ey« = xX" x Ey = E>» X E|.
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Since o¢; = E; and oe;+ = E;+, 1t 1s clearly that o preserves the cross product and so belongs
to G,. This completes the proot of Theorem A.

Remark 4.5 The argument of G;-congruence is similar to that in [6]. If M 1s complete,
connected and simply connected, then M is globally isometric to $°, and the argument above
shows that \ is G,-congruent to x".

5. PROOFS OF THEOREM B AND THE COROLLARIES

1°. Proof of Theorem B.
Not loss of generality, we still assume P(M) C S°(1) € S°(1). Then from (4.8) and the
minimality we get an equality as

3aw;y = a-r»w| —ad Ww», whereda = a W, + a-»w»,,

which can be written into
2 2 2
6a Wiy = a,»Ww) — a;wa,.

Thus at points where a® # 0,
wip = £[(loga®) sy — (loga”) yws].

Since (see (4.13)) dw» = 2(a*> — w; A w,, we obtain the following identities:
Alog a> = 12(1 —a”), at points where a* # 0, (5.1)

Aa® = 12a°(1 — a*) + 16|Va > onM. (5.2)

We can also assume M to be connected, otherwise we need only to consider each of its
connected components. Thus by the equation of Gauss, either > > 1 or a” < 1. Since M is
compact, the former case 1s impossible and hence a- < 1. Now (5.2) and the compactness
imply that ¢ = 0, that 1s \ 1s totally geodesic.

2°. Proof of Corollary C.

If R > 2, namely, a- < 1, then by (5.2) and the compactness, we have either a’ = 0 or
a’ = 1;

[f R < 2, namely, @ > 1, then by (5.1) and the compactness, we have @ = 1, that is
R =2.

Thus by Remark 4.5, it 1s not hard to see that either 1 1s totally geodesic or, the universal

covering of it is G,-congruent to x".

3°. Proof of Corollary D.

We need only to show that (M) can not be contained in a S*(1) € S°(1) unless it is totally
geogesic and this 1s rather clear. In fact, if we are able to choose one more constant unit
normal vector field e»« at the begining, then /i(e;, ¢2) will also be zero identically, which with
(4.13) implies a = 0.
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